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Abstract

This paper studies how natural disasters spread conflicts within a network. We first
construct a new panel data set that combines geo-referenced information about conflict
events and natural disasters, for 5,944 districts in 53 African countries, over the period
1989–2020. Considering natural disasters as exogenous shocks that affect the combat-
ants’ activity in a locality, we find that natural disasters decrease conflict incidence in
the affected locality, increase conflict incidence in neighboring localities, and lead to
an overall net increase in conflict incidence. The spatial dispersion of conflict varies by
the level of local rent-seeking opportunities and the level of international, post-disaster
aid. We then provide a simple theoretical framework that may explain this conflict
dispersion pattern. Findings provide important implications for implementing local
and aggregate level conflict mitigation policies.

JEL classification numbers: D74, D85, O55.
Key words: Natural disasters, conflict, Africa, spillovers, networks.

∗This paper was previously circulated under the title “Conflicts in Networks”. We thank Robert Sauer,
three anonymous referees, Eik Swee as well as conference and seminar participants at the Australasian
Development Economics Workshop, Australian Conference of Economists, Deakin University and Monash
University for their helpful comments. We also thank Shaun Astbury for excellent research assistance. Ashani
Amarasinghe gratefully acknowledges support of the Australian Government through its Research Training
Program Scholarship. Paul Raschky gratefully acknowledges financial support from the Australian Research
Council (ARC Discovery Grant DP150100061). Yves Zenou gratefully acknowledges financial support from
the Australian Research Council (ARC Discovery Grant DP200102547). Junjie Zhou gratefully acknowledges
financial support from NSFC under Grant Nos. 72450001, 72521003, and 72342032. This research was
supported in part by the Monash eResearch Centre and eSolutions-Research Support Services through the
use of the Monash Campus HPC Cluster.
†School of Economics, University of Sydney, and SoDa Laboratories, Monash University. Email:

ashani.amarasinghe@sydney.edu.au.
‡Department of Economics and SoDa Laboratories, Monash University. Email:

paul.raschky@monash.edu.
§Department of Economics, Monash University. Email: yves.zenou@monash.edu.
¶School of Economics and Management, Tsinghua University. Email: zhoujunjie@sem.tsinghua.edu.cn.

1



1 Introduction

Climate change ranks among humanity’s most pressing threats, not least because mounting

evidence links it to rising violence and conflict (Hsiang et al. 2013; Burke et al. 2015;

Mach et al. 2019). Africa sits at the center of this risk: its food-producing ecosystems,

coastlines, and fast-growing urban settlements are highly exposed to warming-driven stresses,

while governance and fiscal buffers remain limited (Trisos et al. 2022). These climatic

pressures intersect with a distinctive conflict landscape. In 2014, more than half of the

world’s documented violent events took place on the continent, even though it is home to

only 16 percent of the global population (Cilliers 2015). Conflicts in Africa often ignite as

localised skirmishes and then cascade across districts and national borders.1

A large empirical literature in economics has focused on droughts, emphasizing their ef-

fects on agricultural incomes, food insecurity, and the opportunity costs of mobilization (e.g.

(Miguel, Satyanath & Sergenti 2004, Harari and La Ferrara 2018, McGuirk and Nunn 2025).

However, recent assessments underscore that droughts are neither the only nor necessarily

the most acute natural disasters facing African societies (GCA 2022). While droughts have

affected more people in Africa overall in the longer term, during the last decade (2010–2020)

more people across Africa have been impacted by floods alone compared to droughts (Lum-

broso, 2020). Droughts largely affect North and Southern Africa. In contrast, floods and

storms affect almost all regions of the continent, and increasingly strike areas that are both

more densely populated and exhibit higher levels of economic activity.2 The frequency and

1One example is the Boko Haram insurgency in Nigeria, which began as small skirmishes with security
forces in 2009—mainly in Bauchi, Borno, Yobe, and Kano states (Thurston 2018). By 2014 the insurgency
had intensified and spread to Cameroon, Chad, Mali, and Niger (Dowd 2015). A second example is the
Lord’s Resistance Army, which started in 1987 in northern Uganda and later spilled into Sudan, the Central
African Republic, and the Democratic Republic of Congo, where it remains active.

2Based on the disaster data used in this study (Section 2.2), 174 subnational areas were hit by major
droughts compared to 1,079 subnational areas who were affected by any other natural disaster type over
the period 1989–2020. In addition, non-drought disasters also impact areas with more economic activity,
as proxied by nighttime light (NTL) intensity. The average NTL intensity in flood affected areas is 3.23
compared to 0.11 in drought affect areas.
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severity of these types of natural hazards are projected to rise in Africa under most warming

scenarios (World Meteorological Organization 2024).

Sudden-onset disasters—such as floods, storms, and earthquakes—differ fundamentally

from slow-onset disasters like droughts in their nature, immediacy, and spatial footprint

of destruction. While slow-onset disasters primarily affect agricultural output by gradually

reducing crop yields and depleting water resources over extended periods, sudden-onset dis-

asters typically devastate physical infrastructure, housing, and other durable assets within

hours or days. These distinct destructive mechanisms are crucial because they shape both

the immediate human and economic toll of disasters and the subsequent responses of affected

populations. For instance, Deryugina et al. (2018) show that Hurricane Katrina—a sudden-

onset disaster—triggered widespread displacement, sharp but temporary income losses, and

large-scale geographic reshuffling of human capital, with recovery facilitated by substan-

tial external aid. In contrast, Hornbeck (2012) finds that slow-onset disasters, such as the

Dust Bowl, induced persistent economic decline through gradual environmental degradation,

with adaptation occurring via long-term out-migration and land abandonment rather than

recovery.

These contrasting dynamics have direct implications for the spatial distribution of con-

flict. Sudden-onset disasters can produce short-term destruction of contested resources,

hinder the maneuverability of conflict actors, and promote conflict diffusion. Droughts, by

contrast, may locally lower the opportunity cost of participating in violence, but their slower

progression and wider spatial reach imply more diffuse and potentially delayed effects on

conflict. Understanding these distinctions is central to explaining why different disaster

types generate distinct spatial conflict dynamics—a key focus of this study—and, in turn,

to informing the design of effective policy responses.

This paper provides a theoretical and empirical analysis of how such disasters reshape the
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geography of conflict in Africa. We analyse how a negative, exogenous shock to one district

alters violence locally and how that effect spills over to neighbouring districts through the

network that links combatants.

To examine both the direct and the spillover effects of natural disasters on conflict, we

assemble a district–year panel that covers 5,944 African ADM2 units (second-level admin-

istrative areas) from 1989 to 2020. The data set links geo-referenced conflict events—our

outcome variable—to geo-referenced natural disasters—our treatment variable.3 Next, we

construct an altitude-adjusted inverse-geodesic distance matrix to measure connectivity be-

tween districts. Merging this spatial network with the panel allows us to trace how a disaster

in one location alters conflict risk in neighbouring areas. Our identification rests on the quasi-

random timing and location of disasters, which we treat as exogenous shocks to the local

probability of conflict.

Our results reveal that the spatial dynamics of disaster-induced conflict differ markedly

by disaster type. We find that sudden-onset disasters, such as floods and storms, decrease

conflict incidence within the directly affected district but generate systematic and positive

spillovers to geographically connected areas. In contrast, droughts increase the likelihood of

conflict within the affected district and produce additional, persistent spillovers into neigh-

boring regions.

The second part of the paper investigates the mechanisms underlying these spatial pat-

terns. We construct district-level proxies for rent-seeking potential—economic activity mea-

sured by night-time lights, agro-climatic suitability for high-value crops, and the value of

mineral deposits. Following Nunn and Qian (2014), we also track international emergency

aid from the Office of Foreign Disaster Assistance (OFDA), which can ease liquidity and

logistical constraints for both rebel groups and government forces. After a disaster, vio-

3We rely on EM-DAT, which records a natural disaster when at least one of the following criteria is met:
(i) ten or more deaths, (ii) one hundred or more people affected, (iii) a state of emergency, or (iv) a call for
international assistance.
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lence is particularly likely to spill over into neighboring districts characterized by greater

economic development, higher crop suitability, and the presence of mineral resources, con-

sistent with combatants reallocating efforts toward still-lucrative targets. In contrast, large

inflows of emergency aid dampen the outward diffusion of conflict but increase the likelihood

that fighting persists within the disaster-affected area. Taken together, these results suggest

that, relative to droughts, distinct mechanisms drive the spatial conflict dynamics following

sudden-onset disasters, underscoring the need for more nuanced policy responses.

To explain these findings, we build a simple model in which several players contest rents

in a set of interconnected “battles.”4 Each player chooses how much effort to devote to each

battle, and success probabilities follow the standard Tullock contest success function (CSF):

greater effort raises the chance of winning and thus securing the prize. Because the general

model yields nonlinear best-response functions, we study two tractable network structures,

a star and a line, to derive clear comparative-statics results.

The empirical data are available only at the district level, so we aggregate individual

efforts accordingly: each district corresponds to one battle and its combatants. A negative

shock to one district lowers battle intensity there but raises it in path-connected districts;

the magnitude depends on the battle’s position in the network and on combatant strength.

The logic is intuitive: the central agent (the one engaged in two battles) reallocates effort

across contests to maximize total pay-off, and the remaining agents respond optimally. This

mechanism explains how a local shock propagates through the network. The same pattern

emerges in the line network: a shock to the left-hand district affects the battle in the right-

hand district, even though the two districts are not directly connected.

Using geo-referenced data on conflict and natural disasters at the district level helps iden-

tify patterns, but it also limits our ability to uncover the deeper mechanisms that motivate

armed actors. Both the outcome and treatment variables are imperfect proxies that combine

4For surveys of network economics, see Jackson (2008) and Jackson et al. (2017).
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several distinct processes. As a result, we confront the same questions that challenge much

of the literature. Natural disasters can raise armed groups’ costs of manoeuvring—or even

render an area inoperable—while simultaneously lowering the expected returns from control-

ling local resources. They may increase grievances or reduce opportunity costs for civilians,

thereby encouraging recruitment into belligerent factions (Collier and Hoeffler 2004). Disas-

ters can also weaken state capacity to maintain order (Fearon and Laitin 2003). In addition,

refugees who flee to neighbouring districts may become more susceptible to recruitment

by armed groups, creating another channel for conflict spillovers (Humphreys and Weinstein

2008). It is therefore likely that the mechanisms behind our findings represent an intertwined

mix of these explanations (Cedermann and Vogt 2017).

As stated above, our model only offers one possible mechanism; other forces are likely at

work.5 Because the data are aggregated at the district level, our empirical analysis remains

agnostic about the micro-level channels that link natural disasters to conflict. Even so, the

findings have clear policy relevance: local shocks propagate to neighbouring districts and

can raise overall levels of violence, as illustrated by Boko Haram in Nigeria and the Lord’s

Resistance Army in Uganda.

Understanding the dynamics of conflict diffusion after natural disasters is particularly

important for policymakers. To curb escalation, governments and international organisations

often deploy troops to contain an initial outbreak, thereby raising the costs or lowering the

benefits of fighting in the affected locality. Yet once these forces clear an area, violence fre-

quently re-emerges elsewhere. Such interventions can therefore spread conflict to previously

untouched districts and draw in new actors. Post-disaster aid presents a similar trade-off:

while it dampens outward diffusion, it also increases the likelihood that hostilities persist

within the stricken district. A more systematic understanding of these spatial interactions

5For instance, a negative shock can prompt population movements. A natural disaster may generate a
wave of refugees whose arrival heightens frictions and escalates violence in adjacent areas.
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can help decision-makers design more effective strategies for managing localised violence in

Africa.

Our study contributes to several strands of the literature. First, we draw attention to

conflict displacement, an aspect that has received relatively little coverage in the economics

of conflict. Most existing work focuses on the causes and diffusion of violence (e.g., Buhaug

and Gleditsch 2008; Rigterink 2010; Novta 2016; Ray and Esteban 2017).

A large body of research employs national data within the grievance–opportunity-cost

framework of Collier and Hoeffler (2004), which predicts a negative relationship between

income shocks and the likelihood of battle (Miguel et al. 2004; Chassang and Padró i Miquel

2009; Blattman and Miguel 2010; Besley and Persson 2011; Ciccone 2011; Couttenier and

Soubeyran 2014). Some country-level studies extend the analysis to spillovers. Bosker and

de Ree (2014) show that cross-border conflict diffusion helps explain clusters of violence,

while Yesilyurt and Elhorst (2017) find that one country’s military spending affects that of

its spatial neighbours.

Much of this work takes the economic model of crime as a reference point (Corchón

2007); accordingly, the crime literature has long recognised the importance of displacement

(Freeman 1999; Chalfin and McCrary 2017). Our paper brings this insight explicitly into

the study of armed conflict.

Our paper builds on a recent generation of studies that emphasise the localised nature

of conflict. This literature combines theory and evidence to show how positive (e.g., Dube

and Vargas 2013; Berman and Couttenier 2015; Fjelde 2015; Berman et al. 2017; McGuirk

and Burke 2020) and negative (e.g., Hodler and Raschky 2014b; Harari and La Ferrara 2018;

Berman et al. 2021; Cervellati et al. 2022) economic shocks affect the incidence of violence.

Although these papers focus on local effects, most also test whether shocks spill over into

neighbouring areas.
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Our study is closest to this latter strand. Harari and La Ferrara (2018) show that adverse

weather during the growing season raises conflict, primarily through the opportunity-cost

channel. Berman et al. (2017) exploit exogenous changes in world mineral prices and find

that positive shocks to local mining wealth heighten conflict both locally and in adjacent

districts. McGuirk and Burke (2020) examine global food-price spikes and document that, in

food-producing areas, higher prices reduce “factor conflict” over land but increase “output

conflict” over surplus; the authors argue that rising prices raise producers’ opportunity cost

of soldiering while eroding consumers’ real wages. Cervellati et al. (2022) link malaria

outbreaks to surges in civil violence.

We extend this literature by analysing natural disasters as negative shocks that reshape

conflict dynamics across Africa. To our knowledge, this is the first study to estimate both

the local and the spillover effects of disaster-induced shocks on armed conflict across the

continent.

Second, a growing theoretical and empirical literature examines conflict through the lens

of networks (Dell 2015; König et al. 2017; Brangewitz et al. 2019; Eubank 2019; Mueller et

al. 2022). We contribute to this body of work, and to the broader theoretical literature on

conflict (for a survey, see Kovenock and Roberson 2012), by incorporating network theory

more explicitly (Goyal and Vigier 2014; Jackson and Nei 2015; Franke and Öztürk 2015;

Hiller 2017; König et al. 2017; Kovenock and Roberson 2018; Bocher et al. 2020; Mueller et

al. 2022; Xu et al. 2022).

Our model departs from earlier studies in two ways. First, agents participate in multiple

battles rather than a single contest. Second, we focus on how a negative shock in one location

propagates through the conflict network. Although we present comparative-statics results

for two specific network topologies, the underlying spillover mechanism should extend to

more general structures.
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Moreover, from an empirical perspective, we complement this literature by showing

that exogenous events which decrease the likelihood of a conflict locally can increase the

probability of a conflict in neighboring localities connected via a spatial network. We thereby

complement the existing work on conflict spillovers that exclusively focuses on spillover effects

of factors that increase the likelihood of a conflict locally.

Third, we add to the predominantly empirical literature on natural disasters and con-

flict. Existing work measures the economic consequences of disasters at both the micro

(Mottalebab et al. 2015) and macro levels (Deryugina and Hsiang 2014; Hsiang et al. 2017;

Hsiang and Jina 2014). Other studies examine how climate shocks affect violence (Miguel et

al. 2004; Hsiang et al. 2013; Hodler and Raschky 2014b; Couttenier and Soubeyran 2014;

Mach et al. 2019). Most of this research focuses on temperature or precipitation shocks

and relies on aggregated data—annual or growing-season observations at the country level.

We advance the literature by introducing a geo-referenced, district-level data set that covers

all types of natural disasters, allowing a more granular analysis of the mechanisms linking

disasters to conflict.

The remainder of the paper is organized as follows. Section 2 describes the data and

provides descriptive statistics. Sections 3 presents the baseline empirical framework, while

Section 4 discusses diagnostics and robustness checks. We examine potential mechanisms

in Section 5. Finally, Section 6 concludes. We provide additional descriptions of the data,

robustness checks, and the theoretical model in the Online Appendix.
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2 Data

We work at the second administrative level (ADM2, hereafter “districts”) and assemble

a panel of 5,944 districts from fifty-three African countries for 1989–2020.6 The unit of

observation is the district–year.

2.1 Conflict data

We obtain conflict events from the Uppsala Conflict Data Program’s Georeferenced Event

Dataset (GED; Croicu and Sundberg 2017). UCDP defines an armed conflict as “a contested

incompatibility concerning government and/or territory in which the use of armed force

between the military forces of two parties—of which at least one is the government of a

state—results in at least twenty-five battle-related deaths in a calendar year.” GED reports

each violent event’s date, actors, coordinates, and fatalities.

Using the reported latitude and longitude, we assign every event to an ADM2 district

in ArcMap 10.5 and aggregate events to the district–year level. Our main indicator, conflict,

equals one if at least one fatal event occurs in district i during year t and zero otherwise. On

the basis of the actors involved, we also create binary indicators for the three subtypes of

violence: “state-based,” “non-state,” and “one-sided.” Panel (a) of Figure A.2 in the online

appendix maps the spatial distribution of events.

UCDP records only events that (i) belong to a dyad responsible for at least twenty-five

battle deaths in a given year and (ii) themselves cause at least one fatality. Initial skirmishes

or very low-intensity clashes, precisely those that have not yet spilled over, are therefore

excluded. As a result, some conflicts enter the database only after they have escalated

beyond the purely local stage; our baseline estimates thus pertain to conflicts that have

6ADM2 boundaries are unavailable for Egypt and Libya, where only ADM1 units exist. The average
district in our sample covers 39 km2 and has a population of about 45,000.
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already passed an initial escalation threshold and may understate true diffusion.

To check the sensitivity of our findings, we replicate the analysis with the Armed Conflict

Location and Event Data (ACLED) set, which records non-fatal incidents, demonstrations,

and lower-threshold violence. Although ACLED captures a broader spectrum of political

disorder, its event-coding rules are less tightly aligned with our theoretical framework, which

assumes clearly defined conflict parties that decide whether to engage in a given location.7

2.2 Natural disasters

Our key treatment variable is the occurrence of a natural disaster, which we use as an

exogenous negative shock to a district.

Natural disasters differ from the economic shocks commonly examined in the conflict

literature in several ways that shape both local and spillover effects. First, they are typi-

cally rapid-onset events that destroy built and transport infrastructure, depress agricultural

production, and undermine household welfare far more abruptly than price fluctuations or

cyclical slowdowns. Floods, earthquakes, and storms generate immediate physical damage,

displace residents and combatants, and can redirect violence into neighbouring districts. By

contrast, commodity-price shocks unfold more gradually and mainly alter economic incen-

tives without comparable physical displacement.

Second, disasters can amplify pre-existing vulnerabilities related to resource scarcity

and weak governance. Slow-onset droughts, for example, reduce agricultural output over

time and can spark protracted resource conflicts as communities compete for dwindling sup-

plies. Unlike trade disruptions or financial crises, such climate-related shocks simultaneously

intensify grievances and lower the opportunity cost of mobilisation, especially in agriculture-

7See Keck 2012 and Raleigh et al. 2023 for detailed comparisons of UCDP and ACLED. Keck reports
that up to 29 percent of ACLED events may be incorrectly geolocated for certain African conflicts.
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dependent regions. These characteristics—exogenous, localised, and destructive of both

assets and livelihoods—distinguish natural disasters from the shocks most often studied in

the existing literature.

We obtain disaster data from the Emergency Events Database (EM-DAT; Guha-Sapir

et al. 2016), which records more than 22,000 mass disasters worldwide since 1900. An event

enters EM-DAT when at least one of the following criteria is met: (i) ten or more deaths,

(ii) one hundred or more people affected, (iii) a state of emergency declared, or (iv) a call

for international assistance. For each disaster, the database reports location, type, date,

deaths, people affected, estimated damage, and whether post-event aid from the Office of

U.S. Foreign Disaster Assistance was received.

EM-DAT lists 4,525 disasters in Africa for 1989–2020, of which 2,229 are natural and

the remainder technological (man-made). We retain only natural events, omitting biologi-

cal disasters (epidemics and insect infestations) and keeping those classified as geophysical

(e.g., earthquakes, volcanic activity), meteorological (e.g., extreme temperatures, storms),

hydrological (e.g., floods, landslides), or climatological (e.g., wildfires). This yields 1,534

natural disasters, none of which are “extraterrestrial” events, which EM-DAT also codes but

did not record for Africa during our period. After filtering for events with valid subnational

coordinates, our final data set contains 1,326 district-level disasters. Table A.1 summarises

the distribution by disaster type; floods are by far the most common.

The key challenge when conducting a district-level analysis using EM-DAT data is the

unstructured nature of the subnational location information.8 We overcome this challenge

by manually geocoding each of these 1,326 natural disasters. Natural disasters where the

exact individual village or subnational district was identified were precisely geocoded, while

those recorded as having occurred in larger geographic units were assigned to all districts

within that geographic unit. For each geocoded natural disaster, we allocate a precision

8See Figure A.1 for a sample data extract.
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score, which assigns a value of 4 for precision at the district level (i.e., the highest level of

precision), a value of 3 for precision at the provincial level, 2 at the state level, and 1 at

the country level (the lowest level of precision). We restrict our analysis to natural disasters

geocoded with a precision score of 3 or 4, which accounts for over 96% of the total number

of the geocoded natural disaster locations. Panel (b) in Figure A.2 displays the distribution

of natural disasters in Africa.

Our preferred indicator for natural disasters is a binary variable that assumes a value

of 1 if a natural disaster occurred in district i in a time period, and zero otherwise. We also

generate two indicators on natural disaster subcategories, which we use in our robustness

checks. First, following Gassebner et al. (2010) and Puzzello and Raschky (2014), we classify

disasters that either (i) kill at least 1000 people, or (ii) affect at least 100,000 people in total,

or (iii) cause damages of at least one billion (real) dollars as large natural disasters, and all

other disasters as small natural disasters. Next, following Skidmore and Toya (2002), we

generate indicators of climatic and geologic disasters.9

For the purpose of the baseline estimates in our study, we exclude droughts from the

set of natural disasters for the followings reasons. First, the spatial extent of the drought-

affected area is often not clearly defined, making it difficult to precisely assign the treatment.

Second, droughts are slow onset disasters and their effects last over prolonged time periods,

transcending the fine temporal resolution of our data. Third, droughts are potentially en-

dogenous in the context of this analysis as the probability of occurrence can, partially, be the

result of a conflict itself. Nevertheless, in a robustness check we present estimates including

droughts; our results remain qualitatively and quantitatively similar.

The choice of the spatial unit of analysis, i.e. districts at the second subnational level, is

determined by the available location information of natural disaster events in the raw data.

9Geologic disasters include volcanic eruptions, natural explosions, avalanches, landslides, and earthquakes.
Climatic disasters include floods, cyclones, hurricanes, ice storms, snowstorms, tornadoes, typhoons, and
storms.
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As displayed in Figure A.1, the EM-DAT data set only contains location names of subnational

units rather than precise coordinates of the affected areas. As such, we do not have the

information to conduct a spatial join based on precise longitude/lattitude coordinates which,

together with geocoded data on conflict events, would enable us to conduct the study at a

more granular grid cell level. Nevertheless, in Table B.10 we present two sets of tests that

check the sensitivity of our results when accounting for differences in size of the geographic

unit.

2.3 Other covariates

We draw on three additional data sets to investigate the mechanisms through which natural

disasters influence conflict incidence.

Night-time lights. To proxy economic activity, we use satellite-based night-time luminos-

ity. This measure tracks output at both national (Henderson et al. 2012) and subnational

levels (Hodler and Raschky 2014). We rely on the harmonised series of Li et al. (2020), which

combines the original DMSP imagery (1992–2012) with VIIRS data (2013–2020) to create

a consistent record for 1992–2020. After matching the raster to our district polygons, we

compute annual average luminosity for each district; analyses using this variable therefore

cover 1992–2020. We also construct time-invariant indicators based on the initial (1992)

luminosity distribution. NoLight equals one for districts that recorded zero luminosity in

1992. Among the remainder, LowLight and HighLight flag districts below and above the

median initial value, respectively.

Agricultural suitability. Districts are classified by agricultural potential using raster

data from the Global Land Cover Characteristics Database, version 2.0.10 For each district

10https://lta.cr.usgs.gov/glcc/globdoc2_0
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we calculate the share of land deemed agriculturally suitable. NoAgri identifies districts

with no suitable land, while LowAgri and HighAgri separate the remainder at the median

suitability share.

Mining wealth. Data on extractive activity come from the SNL Mining & Metals database,

which reports the coordinates and mineral composition of projects active during our study

period. Following Amarasinghe et al. (2024), we compute district-level mining wealth as the

average value of all recorded minerals, weighted by contemporaneous world prices. NoMine

marks districts without any project; the median splits the remainder into LowMine and

HighMine.

2.4 Connectivity

Following Amarasinghe et al. (2024), we build a spatial weighting matrix that captures

geographic connectivity. We first identify the centroid of each district and compute the

great-circle (geodesic) distance, dic,jc, between the centroids of districts i and j in country c.

We then incorporate terrain roughness using the altitude-variation index of Acemoglu et al.

(2015), eic,jc, which measures changes in elevation along the straight line that connects the

two centroids, based on GTOPO30 data. The resulting altitude-adjusted inverse distance is

d̃ic,jc =
1

dic,jc
(
1 + eic,jc

) .
This metric assigns higher weights to pairs of districts that are both close together and

separated by relatively flat terrain. Conversely, districts divided by mountainous topography

or located farther apart receive lower weights.11

11As explained in Section 3, our results do not change if we use a connectivity matrix that just relies on
simple geodesic distance.
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For the baseline analysis, we truncate the matrix at a radius of 500 km: district i is

connected to district j only if the centroid of j lies within 500 km of i’s centroid. With

this cut-off, only two districts—large ADM1 units in Libya and Mauritius, for which ADM2

boundaries are unavailable—have no neighbours. The average district has 518 neighbours,

and the maximum is 1,478 for three small districts in Algeria. Sensitivity checks using

alternative cut-offs yield similar results (Table B.12), confirming that 500 km is a practical

upper bound for capturing meaningful spillovers.

We also construct alternative connectivity matrices based on contiguity, major road

networks, and shared pre-colonial ethnic homelands. Appendix Table B.13 reports spillover

estimates derived from these networks.

Table A.2 provides descriptive statistics of our key variables. Approximately 4% of the

district-year observations in the sample experience a conflict over the sample period, while

6% experience a natural disaster. About 45% of the district-year observations report their

neighbouring districts as having experienced a natural disaster.

3 Empirical Framework

We now present the empirical framework. Our goal is to estimate a model that captures

(i) the direct effect of a natural disaster on conflict in district i and (ii) the spillover effect

of a disaster in neighbouring district j on conflict in district i. We assume that disasters

in both locations are exogenous and that the dependent variable, Conflict, exhibits spatial

autocorrelation. Accordingly, we employ a Spatial Durbin Model (SDM), which includes

spatial lags of both the dependent variable and the explanatory variables:
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Conflicti,t = β0DISi,t + β1DISi,t−1 + δ0NDISi,t + δ1NDISi,t−1

+ γNConflicti,t + FEi + FEct + εi,t

(1)

The variable DISi,t is a binary indicator taking a value of 1 if a natural disaster occurred in

district i in year t. As such, the coefficients β0 and β1 capture the direct effect of a natural

disaster on battle probability in years t and t−1, respectively. The variable NDISi,t captures

the spatial spillover effect of a natural disaster that occurred in a neighboring district on

battle probability in district i. We have:

NDISi,t=1 if
∑J

j=1 ωijDISjt > 0

NDISi,t=0 if
∑J

j=1 ωijDISjt = 0,

where the “neighbourhood” between districts is defined by the connectivity matrix Ω = (ωij),

with ωij ∈ [0, 1] when a link exists between districts i and j and ωij = 0 otherwise. As

noted above, Ω measures geographic connectivity via the altitude-adjusted inverse geodesic

distance. The variable NDISi,t is the binary spatial lag of the disaster indicator; it equals

one if at least one neighbouring district experiences a disaster in year t and zero otherwise.12

The coefficients δ0 and δ1 therefore capture the spillover effects of a disaster in a neighbouring

district in years t and t− 1, respectively.13

The spatial lag of the dependent variable, NConflicti,t, absorbs autocorrelation in lo-

cal violence. District fixed effects, FEi, control for time-invariant unobservables, whereas

country-year fixed effects, FEct, net out time-varying national shocks. Because the residual

12Ω is row-normalised, so
∑

j ωij = 1 for every i.
13The altitude adjustment eic,jc could be mechanically correlated with the probability of a disaster. This

does not threaten identification because our spatial-exposure variable NDISict is a binary indicator that
equals one whenever any disaster strikes a district connected to ii within the 500-km band. Since eic,jc > 0
for all pairs, the adjustment never determines whether a link is counted (only its weight) so the magnitude
of eic,jc cannot influence the switch from 0 to 1. Re-estimating the baseline using a matrix based solely on
geodesic distance (i.e., setting eic,jc=0) yields coefficients that are virtually identical to Table 1, column (3)).
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εi,t is likely both spatially and temporally correlated, we report Conley (1999) standard er-

rors that allow correlation within 500 km and across one period.14 Equation (1) is estimated

by ordinary least squares with the fixed effects described above.

A causal interpretation of the parameters β and δ requires that natural disasters—both

in district i and in its neighbours—are as-good-as random conditional on the fixed effects.

Disasters arise from exogenous geographic, climatic, and geological forces that are either

time-invariant (e.g., topography, elevation) or time-varying (e.g., precipitation, wind speed,

plate tectonics). Time-invariant confounders are captured by district effects, while country-

year dummies absorb broader climatic patterns such as El Niño and La Niña. Note that these

two sets of fixed effects not only capture confounding factors related to DIS but also NDIS.

Section 4 further presents robustness checks, including tests for pre-trends and anticipation

effects, that support these assumptions.

Table 1 reports the baseline estimates of both the direct and the spillover effects of

natural disasters on conflict incidence. Column (1) presents the direct effect: a disaster

lowers the probability of violence in the affected district, but the reduction materialises with

a one-year lag.15

Columns (2) and (3) incorporate spillovers, defining neighbourhoods with the altitude-

adjusted inverse-distance matrix truncated at 500 km. Column (2) adds disasters in neigh-

bouring districts but omits the neighbours’ own conflicts. Our preferred specification, Col-

umn (3), includes both variables, isolating the portion of conflict diffusion attributable solely

to exogenous disaster shocks. In both specifications a disaster in a neighbouring district in

year t−1 significantly increases the likelihood of conflict in district i.16 The estimates yield

14Estimation is conducted in Stata 18 with the reg2hdfespatial command.
15Appendix A.3 explores the monthly dynamics of this effect with an alternative set of fixed effects.
16The definition of neighbouring districts in our main specification is agnostic of national borders. In

Table B.14 in the appendix we present results where we explicitly account for national borders when defining
neighbours. We split the baseline spillover treatment variable, NDIS, into disasters occurring in districts
occurring in the same country in a different country from district i (within the 500km cut-off). The results
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Table 1: Direct and spillover effects of natural disasters on conflict

(1) (2) (3) (4)
Conflicti,t Conflicti,t Conflicti,t Conflicti,t

Disasters excluding droughts Droughts

DISi,t -0.0026 -0.0028 -0.0027 0.0049
{0.0021} {0.0030} {0.0030} {0.0075}
(0.0035) (0.0035) (0.0035) (0.0094)

DISi,t−1 -0.0053** -0.0056** -0.0056** 0.0227**
{0.0021} {0.0028} {0.0028} {0.0102}
(0.0030) (0.0030) (0.0030) (0.0126)

NDISi,t 0.0055* 0.0057* 0.0116*
{0.0033} {0.0033} {0.0070}
(0.0035) (0.0035) (0.0093)

NDISi,t−1 0.0104*** 0.0105*** 0.0234***
{0.0033} {0.0033} {0.0081}
(0.0037) (0.0037) (0.0112)

NConflicti,t 0.0049** 0.0024
{0.0022} {0.0031}
(0.0025) (0.0035)

NConflicti,t−1 0.0080*** 0.0045
{0.0023} {0.0031}
(0.0025) (0.0034)

Observations 184,264 184,264 184,264 107,325
Distance Cut-off NA 500km 500km 500km
District FE YES YES YES YES
Country× Year FE YES YES YES YES

Conflict and DIS are binary variables indicating the presence (=1) or absence
(=0) of a battle resulting in at least one death, and natural disaster event,
respectively, in the given district in the given time period. NDIS (NConflict)
is a binary variable indicating the presence (=1) or absence (=0) of a natural
disaster event (battle), in any one of the district’s neighbours, within the given
time period. Neighbourhood is based on the altitude-adjusted inverse distance
matrix, truncated at 500km. present Conley (1999) clustered standard errors,
accounting for spatial correlation up to 500km and temporal correlation up to 1
period, while () present country×year clustered standard errors. *** p<0.01, **
p<0.05, * p<0.1
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two key insights. First, while a disaster suppresses violence where it strikes, it simultane-

ously pushes conflict into neighbouring districts. Second, the magnitudes are economically

meaningful: according to Column (3), a disaster lowers the probability of conflict in the

struck district by roughly 0.5 percentage points but raises it in neighbouring districts by

about 0.5 percentage points contemporaneously and 1 percentage point the following year.17

In Column (4), we use droughts as the treatment.18 Unlike the direct effects of rapid-

onset disasters (such as floods, storms, or earthquakes), which are generally negative within

the affected district, the estimates for droughts indicate a positive and statistically significant

direct effect on conflict incidence in the subsequent year. Specifically, experiencing a drought

in year t−1 increases the probability of conflict in the affected district by approximately 2.3

percentage points in year t. Moreover, the spatial spillover effects are substantial: droughts

in neighboring districts increase conflict incidence both contemporaneously and with a lag.

The magnitude of these spillover effects exceeds that of non-drought disasters, suggesting

that droughts exert a more persistent and spatially diffuse influence on violence.

These contrasting spatial patterns are consistent with our theoretical argument regard-

ing the underlying mechanisms. Sudden-onset disasters such as floods tend to destroy con-

testable assets—crops, infrastructure, or strategic locations—thereby reducing the immediate

incentives for armed groups to engage in conflict within the affected district. The decline in

local conflict following such events, combined with increased violence in neighboring areas,

show that the cross-border spillover effects are more pronounced that the within-country spillover effects.
The direct, decreasing effect of disasters seems to be driven by state and onesided conflict events, while the
spillover effects, both within and outside the country, are more pronounced for non-state conflict events.

17A notable feature is that the direct negative effect becomes significant only after one year. One plausible
explanation is conflict persistence: combatants rarely cease hostilities the very moment a disaster occurs.
Consistent with this interpretation, the heterogeneity analysis in Table B.6 shows that earthquakes generate
an immediate and much larger drop in conflict probability than other hazards, suggesting that their destruc-
tive impact incapacitates armed groups more quickly. We also examine this effect further in Section A.3,
exploiting the fine temporal granularity of the natural disaster data.

18We retain the same control group as in Columns (1)–(3) for cleaner interpretation of the estimates.
Essentially, the comparison is between units that experienced a drought (treated units) and units that never
experienced any other natural disaster (control units). We present estimates for other disaster types in Table
B.6.

20



supports a displacement mechanism driven by resource loss. In contrast, droughts operate

primarily through the opportunity cost channel. As shown by Harari and La Ferrara (2018),

drought-induced agricultural shocks lower rural incomes and, consequently, the opportunity

cost of participating in armed violence. This effect emerges with a temporal lag and extends

beyond the affected area, consistent with local recruitment dynamics and the mobility of

vulnerable populations. The persistence and spatial reach of the drought–conflict relation-

ship highlight the importance of distinguishing among shock types when designing policy

responses to disaster-induced conflict risks.

LeSage and Pace (2009) demonstrate that the point estimates from a spatial regression

cannot, by themselves, quantify spillover effects.19 Following LeSage and Pace (2009) and

Debarsy et al. (2012), we compute the partial-derivative (marginal-effects) decomposition

shown in Table 2. The results reveal a clear pattern: disasters reduce conflict in the district

they strike (the direct effect) but increase conflict in connected districts (the indirect effect).

These forces do not offset each other. Instead, the positive spillovers outweigh the local

reduction, so the total effect of a disaster on the conflict network is positive. In other

words, while violence abates where the disaster occurs, it spreads to neighbouring districts

in sufficient measure to raise the overall incidence of conflict.

19In our setting, a disaster in district i has a direct effect on conflict within i and an indirect effect on
every other district through the connectivity network. The magnitude of those effects varies with a district’s
location, its links via geography and major roads, and the parameters β, δ, and γ.
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Table 2: Direct, indirect, and total Effects

Conflicti,t
Direct Indirect Total

Coeff. SE Coeff. SE Coeff. SE

DISi,t -0.0026 (0.0022)
DISi,t−1 -0.0058*** (0.0022)

NDISi,t 0.0899** (0.0400) 0.0943** (0.0417)
NDISi,t−1 0.1788*** (0.0494) 0.1877*** (0.0508)

Decomposition of he spatial effect into direct, indirect and total effects. Number of Obs. 184,264.
Conflicti,t is a binary variable indicating the presence (=1) or absence (=0) of a battle resulting in at
least one death in district i in year y. DISi,t and DISi,t−1 are binary variables indicating the presence
(=1) or absence (=0) of a natural disaster event in district i in years y and t− 1, respectively. NDISi,t
is a binary variable indicating the presence (=1) or absence (=0) of a natural disaster event, in any one
of district i’s neighbours in year y. Neighbourhood is based on the altitude-adjusted inverse geodesic
distance network. Disasters exclude droughts. The direct, indirect and total effects were calculated
using the post-estimation command impact after the command spxtregress in Stata 19. *** p<0.01, **
p<0.05, * p<0.1

4 Diagnostic tests, alternative spatial econometric mod-

els, and robustness checks

4.1 Diagnostic tests

A central concern in difference-in-differences designs is the possibility of negative weights.20

A TWFE coefficient is a weighted average of group- and period-specific average treatment

effects (ATEs); if some weights are negative, the estimated coefficient can be negative even

when all underlying ATEs are positive, and vice versa.

Most recent methodological work addresses this problem in staggered-adoption settings,

in which units adopt the treatment once and remain treated (Borusyak, Jaravel, and Spiess

2024; Callaway and Sant’Anna 2021; Goodman-Bacon 2021). Our context differs: treat-

ment—the occurrence of a natural disaster—lasts for only one period, and districts may be

20See Baker, Larcker, and Yang (2021) for a comprehensive discussion.
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treated repeatedly. To our knowledge, no existing estimator directly tackles negative weights

in such a repeated-treatment framework.

We follow De Chaisemartin and D’Haultfœuille (2020) and compute the weights at-

tached to each treatment. Figure A.3 plots their distribution for both direct and spillover

treatments. All direct-treatment weights are positive (panel A), and only a negligible share

of spillover weights is negative (panel B), suggesting that bias from negative weights is un-

likely to be a major concern. In addition, in Table B.1 we implement the estimator proposed

by Chaisemartin and D’Haultfœuille (2024)21 Overall, the pattern in our baseline estimates

is replicated using this method too, i.e. we observe a negative direct effect and a positive

spillover effect of natural disasters on conflict. This pattern holds when considering the con-

temporaneous and lagged periods separately as well as when considering the average effect for

both periods. In terms of magnitude, the baseline estimates are slightly more conservative,

on average, than the coefficients reported in Table B.1.

In Figure A.4 we conduct an event-study analysis traces the direct and spillover effects

of a disaster from three years before to three years after the event. Panel A shows that the

local negative effect becomes significant one year after the disaster, while panel B documents

positive spillovers that persist for up to three years. Crucially, neither panel exhibits pre-

trends, lending support to the parallel-trends assumption.22

In Tables A.3 and A.4 we examine the cross-sectional correlations for direct and spillover

disaster occurrence indicators (i.e. DIS and NDIS), and a set of time-invariant district-level

geographic, climatic, and socio-economic control variables, disaggregated by disaster type.

While some district-specific characteristics can predict the occurrence of natural disasters, a

21Note that the corresponding Stata command didmultiplegtdyn does not allow for the simultaneous
estimation of both direct and spillover effects. As a result, we estimate the direct and spillover effects as
separate regressions.

22Because pre-tests may have low power, we follow Roth (2022) to compute the smallest linear trend that
would be detected with 90 per cent power. With eleven pre-periods, the critical slope is 0.00021; using a
more conservative specification, it is 0.00043. Both thresholds are small enough to rule out economically
meaningful pre-trends.
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large part of the variation gets absorbed by the comprehensive set of fixed effects we include

in all our estimates.

Finally, in Table A.5 we examine serial and spatial correlation in disasters. Neither

own-district (column 1) nor neighbouring-district (column 2) disasters are serially correlated,

although a modest contemporaneous spatial correlation emerges (column 3)—expected when

a single event spans more than one district. Our main specification absorbs this by including

both DIS and NDIS.

4.2 Alternative spatial econometric models

Our preference for the SDM relies on specific assumptions about the data-generating pro-

cess. Because the true process is unknown, we gauge the sensitivity of our findings to alter-

native spatial specifications. A natural starting point is the general nesting spatial (GNS)

model with common factors, described by Elhorst (2022, 264) as “the most general spatial

econometric model currently available.” The GNS not only includes spatial lags of the key

variables but also captures dynamics through the temporal lag of the dependent variable,

Conflicti,t−1.23 This can also capture conflict persistence: violence in previous years may

influence current violence. Adding this lag to equation (1) therefore produces a restricted

form of the GNS. Column (1) of Table B.2 shows that the results remain largely unchanged.

That said, introducing Conflicti,t−1 in a fixed-effects setting risks “Nickell bias,” and the

GNS is often over-parameterised, which can inflate standard errors (Elhorst 2014).

A simpler alternative is the spatial lag of X (SLX) model, which omits spatial autocor-

relation in the dependent variable. Recent studies have used SLX specifications to analyse

conflict spillovers from weather shocks (Eberle et al. 2020; McGuirk and Nunn 2021), food-

price shocks (McGuirk and Burke 2020), and soil productivity (Berman et al. 2021). We

23A full GNS would also contain spatially autocorrelated errors (Elhorst 2022).
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estimate an SLX variant by dropping the spatial lag of the dependent variable from equation

(1); results appear in column (2) of Table B.2. However, the SLX assumption of zero spatial

dependence in conflict is difficult to defend here; if violated, the model suffers omitted-

variable bias. For that reason, we retain the SDM—augmented with a range of robustness

checks—as our preferred specification.

The spatial-econometric literature offers several estimators that address the endogene-

ity of the spatial lag in SDM settings, including maximum likelihood (Ord 1975), quasi-

maximum likelihood (Lee 2004), instrumental variables (Anselin 1988), GMM (Kelejian and

Prucha 1998, 1999, 2010; Kapoor et al. 2007), and Bayesian MCMC (LeSage 1997). Yu et

al. (2008) and Lee and Yu (2010b) propose bias-corrected estimators for dynamic spatial

panels with two-way fixed effects. None of these methods, however, is currently implemented

for binary outcomes with spatial weights. We therefore estimate a linear probability model

with district and year fixed effects and report robustness checks that exclude the potentially

endogenous spatial and temporal lags.

4.3 Robustness Checks

In this section we present additional robustness checks. We first reconsider the definition of

a disaster. The baseline excludes droughts for two reasons: droughts are spatially diffused,

making precise localisation difficult, and they unfold over multiple years, complicating at-

tribution to a single period. Table B.3 re-estimates the model with droughts included. The

spillover effect becomes even larger and appears contemporaneously, while the sign of the

direct effect remains unchanged.

EM-DAT reporting improved markedly after 2000, raising the possibility of measurement

error in the early years. Restricting the sample to 2000–2020 (Table B.4) leaves the spillover

estimates intact. The direct effect stays negative but is estimated less precisely, consistent
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with the loss of observations.

Table B.5 investigates whether the conflict effects vary by disaster category. In each

column we keep the same control group as in the baseline and redefine the treated group

according to the relevant disaster type. Columns (1) and (2) split events into large and

small disasters.24 Although the direct coefficients are negative for both size classes, neither

is statistically significant. Interestingly, the immediate positive spillover stems from small

disasters, whereas the lagged positive spillover is driven by large disasters. Next, we contrast

climatic with geologic events.25 Both the negative direct effect and the positive spillovers

are concentrated in the climatic category. Table B.6 drills down to individual hazards and

shows that floods generate the strongest pattern.26

Most disaster types reduce conflict where they strike and raise it in connected districts;

droughts are the exception, increasing conflict risk in both the affected and neighbouring

areas. This finding mirrors Harari and La Ferrara (2018), who document higher violence

following droughts during the growing season. Table B.7 corroborates this result with the

Standardised Precipitation–Evapotranspiration Index (SPEI). Column (1) reproduces the

familiar positive direct effect of drought on conflict. When spatial spillovers are included

(column (2)), the spillover term remains positive and significant, whereas the direct coeffi-

cient becomes imprecise. The difference likely reflects Harari and La Ferrara’s practice of

interacting SPEI with the local growing season, making their measure more tightly linked

to agricultural stress.

Taken together, the evidence suggests a useful distinction. Disasters that are more

likely to destroy physical—and especially public—infrastructure (e.g., floods, earthquakes,

24Following Gassebner et al. (2010) and Puzzello and Raschky (2014), we classify an event as large if it
(i) causes at least 1,000 deaths, (ii) affects at least 100,000 people, or (iii) inflicts damages of at least one
billion real U.S. dollars; all other events are deemed small.

25Geologic disasters include volcanic eruptions, natural explosions, avalanches, landslides, and earthquakes;
climatic disasters comprise floods, cyclones, hurricanes, ice storms, snowstorms, tornadoes, typhoons, and
storms (Skidmore and Toya 2002).

26Floods account for roughly 67 per cent of the disasters in our sample; see Table A.1 for details.
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landslides) tend to lower conflict in the struck district but diffuse violence outward. By

contrast, disasters that primarily harm agricultural output or human health (e.g., droughts)

tend to raise conflict both locally and in adjacent districts.

We next consider alternative definitions of the outcome variable. UCDP classifies vio-

lence into three actor-based categories—state-based, non-state, and one-sided conflict. Table

B.8 estimates the disaster effects for each category separately and shows that the baseline

pattern is driven primarily by state-based and non-state battles.

To test the robustness of our findings, we replicate the analysis with the Armed Conflict

Location & Event Data set (ACLED). Because ACLED begins only in 1997, the number

of observed disasters—and thus treatment events—falls sharply. Column (1) of Table B.9

reports estimates using an ACLED-based outcome that equals one if at least one violent event

of any ACLED type occurs in a district–year. Column (2) re-estimates our preferred UCDP

specification on the shorter 1997–2020 sample. Column (3) pools UCDP and ACLED events:

the dependent variable equals one if either source records a violent event in the district–year.

Across all three panels, the spatial spillover effects mirror the baseline. For the estimates

using ACLED data, we even find spillover effects occurring in the concurrent year (columns

(1) and (3). In contrast, we do not observe systematic, direct effects of disasters on ACLED

events. While the sign is again negative, the size of the coefficient estimates is smaller

compared to UDCP events and the estimates are not statistically significant. The large

reduction in the number of observations is one reason; another is that the disaster-driven

dispersion mechanism may apply more strongly to UCDP-type conflicts, which involve clearly

defined actors, theatres, and fatality thresholds.

ADM2 districts across Africa vary in size and several recent studies of subnational

conflict in Africa use grid cells rather than ADM2 units as the unit of analysis (Berman et

al. 2017; Harari and La Ferrara 2018). Grid cells offer advantages—uniform size and stable
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boundaries—but they require precise geolocation for every variable so that events can be

assigned to the correct cell. While exact coordinates are available for our outcome variable

(conflict), they are often missing for natural disasters.27 EM-DAT records disaster locations

by the names of subnational units (villages, districts, provinces). Converting those names to

grid cells introduces measurement error, which can attenuate coefficients.28

In Table B.10 we present the results of two sets of tests to check the sensitivity of our

results when accounting for differences in size of the geographic unit. First, we replicate

our analysis on a sub-sample of districts with an area of 55 km2 and below.29 The results

in columns (1) and (2) show that the pattern of the main results are robust. Second,

we accessed an alternative georeferenced dataset on flood disasters from the Dartmouth

Flood Observatory (DFO, Brakenridge 2025). We combine the geographic centers of flood

events from that dataset with grid cell polygons and re-estimate our main specification

(columns (3) and (4)) Again we find a negative direct effect of floods on conflict, although

it is not precisely estimated, and positive and statistically significant, conflict spillovers to

neighboring regions.30

Although our main focus is conflict incidence, we also follow common practice in the

literature (Harari and La Ferrara 2018) by examining battle onset and termination. Table

B.11 defines two binary indicators—one for the first year of a battle in a cell (onset) and

one for the last year (termination). We find no evidence that natural disasters significantly

affect either onset or termination.

27Harari and La Ferrara (2018), for example, rely on the geo-referenced SPEI index to measure drought.
28Figure A.1 in the appendix illustrates this problem.
29This size cut-off is similar to the size of the PRIO grid cells (at the equator) that are commonly used

and excludes very large districts.
30DFO’s flood data does not offer any advantage over our manually-coded EM-DAT data. Its’ point data

mark only arbitrary geographic centres of a flood event, not the flood’s footprint. Overlaying them on grids
implies that only single cell will be treated and wrongly assigning neighbouring, affected cells to the control
group. The accompanying rectangular “affected-area” polygons are ,to a large extent, not remote-sensing
outputs but are based on media reports listing towns/provinces. More concerningly, some of these event
polygons are unrealistically large, spanning over entire (or even multiple) countries.

28



We test the sensitivity of our results to different distance cut-offs and connectivity

networks. Table B.12 varies the radius that defines the geographic network, while Table

B.13 replaces the inverse-distance matrix with alternative links—contiguity (col. 1), shared

pre-colonial ethnicity (col. 2), and primary/secondary roads (col. 3).31 The direct, negative

effect of a disaster is statistically significant in every specification. Contiguity and ethnic links

show no significant diffusion of post-disaster conflict, whereas roads yield positive spillovers

consistent with the baseline.32 The insignificant findings for contiguity and ethnic homelands

is not surprising. EM-DAT events usually strike clusters of adjacent districts, so a contiguity

or ethnic-homeland matrix seldom isolates a neighbour that is exposed to a disaster while

the focal district is not. Because there are so few of districts that are connected but not

untreated themselves, the precision of the estimated δ is rather low. In Table B.14, we

explore connectivity within and outside countries.

Our final robustness exercise asks whether the conflict spillovers are driven by economic

spillovers induced by disasters. Because official, district-level GDP data are unavailable,

we proxy economic activity with night-time lights, following Henderson et al. (2012) and

Hodler and Raschky (2014). We use the harmonised DMSP–VIIRS series of Li et al. (2020),

aggregated to districts for 1992–2020. In column (1) of Table B.15, we replace conflict with

annual district-level night-time luminosity, Lighti,t, as the dependent variable in equation

(1) and find no statistically significant effect of disasters on neighbouring districts’ economic

activity. Column (2) keeps Conflicti,t as the outcome but adds night-time lights for both

districts i and j as controls; the disaster coefficients are virtually unchanged, indicating that

the conflict spillovers we document are not mediated by economic spillovers.

31Road data (2016) come from OpenStreetMap; pre-colonial ethnic homelands from Murdock (1959).
32Unfortunately, the lack of time-varying road data prevents a deeper exploration.
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5 Mechanisms of Disaster-Driven Conflict Diffusion

The relationship between natural disasters and spatial conflict dynamics is complex, driven

by several overlapping mechanisms. The literature points to a variety of channels through

which disasters may influence violence, including economic shocks, population displacement,

and temporary losses of state capacity. Yet the aggregate nature of our data—and the

absence of finer-grained information—limits our ability to test these channels directly. Any

formal interpretation of the results must therefore remain cautious.

To maintain analytical tractability, we develop a theoretical framework that casts com-

batants as the central decision-makers. By narrowing the focus to this group, we can examine

a single, tractable channel through which natural disasters redistribute conflict across space.

Although the model is deliberately stylised, it offers a coherent first pass at how disas-

ters may alter combatants’ strategic behaviour—dampening violence where the shock occurs

while pushing it into neighbouring districts.

In the model (Section C), several players compete in separate battles for contestable

rents. These battles are linked by a network, and each player chooses how much effort to

devote to each engagement. Victory follows a standard Tullock contest success function:

greater effort raises the probability of winning. Because the best-response functions are

nonlinear, we analyse a simple star network with two battles and three players, one of whom

participates in both contests. A negative shock in one district lowers effort there but raises

it in the connected district; the magnitude of each response depends on network position

and player strength. The central player, who fights in both battles, reallocates effort across

contests to maximise total pay-off, and the two peripheral players adjust optimally to this

shift.

Following a negative shock in a locality, the resulting decrease in the benefits—and

increase in the costs—of fighting produces heterogeneous effects across both time and space.
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In the short run, a disaster reduces contestable rents and raises the costs of manoeuvring

and of accessing financial or military resources, temporarily incapacitating rebels. This cost

increase is likely to outweigh any residual benefits, generating the negative direct effect we

observe in the struck district. Over a longer horizon, however, rebels expand their strategic

calculus, shifting violence to well-connected neighbouring districts with higher prospective

rents, where the expected pay-off exceeds that in the disaster-hit area.

Post-disaster emergency aid introduces a countervailing force. Relief programmes ease

resource shortages and inject new, potentially lootable assets. By restoring local stakes and

lowering operational costs, aid enables combatants to continue fighting in the affected district

and reduces their incentive to relocate violence.

This section investigates the mechanisms behind these patterns. First, we examine how

post-disaster conflict dispersion varies with local resource endowments, using geo-referenced

measures of economic activity and natural-resource wealth. Second, we analyse how inter-

national emergency aid shapes the spatial diffusion of conflict after a disaster.

5.1 Conflict spillovers based on district-specific characteristics

We now investigate how the spatial dispersion of conflict in the aftermath of disasters varies

by the expected returns from fighting in a particular locality. As described in Section 2.3,

each district is classified, on the basis of pre-disaster averages, into no, low, or high categories

for (i) night-time luminosity, (ii) agricultural suitability, and (iii) mining activity. We treat

these time-invariant features as proxies for the local “prize” that combatants might seize

once a neighbouring shock occurs.

To capture this, we define an interaction term NDISi,t × Zi, where Zi is a vector of

time-invariant characteristic of district i, where district i is the recipient of conflict spillovers

following the natural disaster shock experienced by its neighbour, district j. This interaction
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term would assume a value of 1 if
∑J

j=1 ωijDISjt > 0 and Zi=1. It would assume a value of

0 if
∑J

j=1 ωijDISjt=0 or Zi=0 or both.

We combine these interaction terms within the following specification, to explore the

mechanisms underlying the spatial spillovers of conflict.

Conflicti,t = β0DISi,t + β1DISi,t−1 + δ0NDISi,t + δ1NDISi,t−1

+ λ0(DISi,t × Zi) + λ1(DISi,t−1 × Zi)

+ µ0(NDISi,t × Zi) + µ1(NDISi,t−1 × Zi)

+ γNConflicti,t + FEi + FEcy + εi,t

(2)

All variables remain the same as per Equation (1), with the only difference being the

addition of the interaction terms, as discussed above. Consistent with baseline estimates,

the “neighbourhood” is defined in terms of the inverse geographic distance. The error term

εi,t is assumed to be spatially and temporally correlated and as such we present Conley

(1999) clustered standard errors accounting for spatial correlation up to 500km and temporal

correlation up to 1 period.

In Figure 1, panels (a)–(c) illustrate disaster-induced conflict diffusion through night-

time lights, agricultural activity, and mining activity, respectively. Dark-blue estimates

capture the direct effect of a disaster in district i (DIS), conditional on district characteristics

Zi; light-blue estimates show the spillover effect of disasters in neighboring districts (NDIS)

conditional on the same characteristics.

Panel (a) shows that disasters reduce violent conflict mainly in districts with low yet

positive nighttime-light intensity areas with some economic activity but neither the poorest

regions nor urban hubs. The corresponding conflict spillovers likewise concentrates in low-

light districts. This near-mirror pattern implies that combatants disengage from moderately

lucrative districts and relocate to neighboring districts offering similar rent-seeking oppor-
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tunities. Spillover estimates are positive but insignificant in high-light districts, perhaps

because such areas enjoy stronger government protection and are less attractive to small

rebel units.

These results are in line with the propositions in our theoretical framework in Section C.

In our star-network set-up a disaster lowers the local prize; the central player therefore

reallocates effort away from battle toward the adjacent battle, and peripheral opponents

respond in kind, generating a mirror-image increase in neighbouring districts (Proposition 2).

Urban or more developed districts face stronger state capacity, which raises contest costs and

dampens both the direct and the displaced fighting, whereas zero-light districts offer little

rent to compete for, leaving both coefficients close to zero.

Panel (b) reveals a similar pattern for agricultural suitability: disasters suppress fighting

in districts with moderate or high suitability and, after a brief lag, displace violence into

neighboring districts with comparable suitability. This echoes the comparative-statics result

that higher (post-shock) relative prizes in connected nodes draw in relocated effort when the

original battlefield becomes less profitable.

Panel (c) reports analogous results for mining activity. While the direct effect of disaster

decreasing violence in mining districts is less pronounced, we again find that disaster lead to

increases in fighting activity in neighboring districts with some or even high mining activity.

For mining districts the direct negative effect is muted, indicating that combatants are

reluctant to leave areas with extractive rents even after a shock. In cases where displacement

occurs, however, conflicts preferentially jump into other mining districts, where similar rents

can still be appropriated, in line with the model’s prediction that effort is re-directed toward

the next-best battle with comparable prize value.

Taken together, the three mechanisms support the idea that disaster-related conflict

dispersion is driven, at least in part, by the presence of lootable resources and rent-seeking
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opportunities in a locality. By damaging physical and natural assets, disasters lower the pay-

off to fighting in the affected locality, prompting combatants to shift operations to adjacent

districts that offer comparable prizes.

5.2 The role of foreign aid

The EM-DAT disaster database records whether an event received assistance from the Office

of U.S. Foreign Disaster Assistance (OFDA). To examine whether the receipt of foreign

assistance affects the dynamics of conflict spillovers, we convert this information into a

binary aid indicator and re-estimate the model to test for heterogeneity. In doing so, we use

an econometric specification similar to that of Equation 2. The distinction, however, is that

within these estimates Zi is replaced by a binary indicator on whether, following the natural

disaster, the neighboring district received OFDA or not.

Figure 2 shows that the allocation of international emergency aid leads to reversal of the

baseline conflict dispersion pattern.33 In the baseline, a disaster lowers conflict in the struck

district; with OFDA aid, conflict in that district rises significantly. Conversely, disasters

without aid raise violence in neighbouring districts, whereas disasters followed by aid reduce

it.

33Corresponding estimates, in tabular form, are in Table B.17.
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Figure 1: Heterogeneous effects of conflict diffusion

(a) Heterogeneity by level of nighttime light (b) Heterogeneity by level of agricultural activity

(c) Heterogeneity by level of mining wealth

Note: Dots show the estimated coefficients on DISi,t×Zi (in dark blue) and NDISi,t×Zi (in light blue) using Eq. (2). Zi and Zj

are time-invariant binary indicators for nighttime light, mining wealth and agricultural suitability in district i. The “no–activity”
category is the reference group. See Section 2.3 for variable definitions. Estimates correspond to Columns (2), (4) and (6) of
Table B.16. Neighbourhood is defined based on the altitude-adjusted inverse geodesic distance matrix truncated at 500 km.
Standard errors are based on Conley (1999) clustering, with 500 km spatial and one-period temporal correlation.
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Figure 2: Effects by OFDA receipt status

Notes: DIS is a binary variable indicating the presence (=1) or absence (=0) of a natural disaster event, in the given district
in the given time period. NDIS is a binary variable indicating the presence (=1) or absence (=0) of a natural disaster event,
in any one of the district’s neighbours. Disasters exclude droughts. Aid is a binary indicator that identifies whether or not
the natural disaster, whether in district i or in the neighbouring districts, received foreign aid from the OFDA. Dots show
the estimated coefficients while horizontal lines show the 90% confidence intervals based on Conley (1999) clustered standard
errors, accounting for spatial correlation up to 500km and temporal correlation up to 1 period. Neighbourhood is defined as
per the altitude-adjusted inverse geodesic distance matrix truncated at 500km. Estimates include district and country×year
fixed effects.

In the star–network contest of Section C an exogenous shock affects conflict through two

channels: it destroys pre-existing rents in the epicentre but may simultaneously attract new,

aid-related resources. Our comparative statics (Proposition 3) show that if the post-shock

net prize in a district rises relative to surrounding districts, equilibrium effort is re-directed

into the affected district, reducing the incentive to fight next door.

Emergency assistance therefore flips the spatial gradiant of prizes created by the disas-

ter, transforming the outward displacement of violence into an inward pull. The empirical

coefficients in Figure 2 map onto this prediction: aid restores (and even augments) the

contestable surplus in the treated district, so combatants concentrate their effort there and
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abandon neighbouring battlefields.

Our findings reinforce the core mechanism of the model. Armed actors strategically

reallocate effort toward the district with the highest relative post-shock prize and caution

that well-intended relief can inadvertently stoke violence exactly where it is delivered. These

results echo Nunn and Qian’s (2014) conclusion that foreign aid can fuel violence by raising

the returns to fighting or by supplying rebels with resources. Aid appears to concentrate

armed activity in the recipient district, leaving less incentive or capacity for rebels to ex-

pand into surrounding areas, which helps explain the decline in neighbouring conflict when

assistance is present.

6 Conclusion

This paper shows that natural disasters reshape the spatial patterns of violent conflict in

Africa. Using a district–year panel for 5,944 ADM2 units across fifty-three countries from

1989 to 2020, we find that a disaster lowers the probability of conflict in the stricken district

but raises it in neighboring districts that are connected through a geographic network. On

net, disaster shocks increase the spatial system’s overall likelihood of violence. Importantly,

we show—both empirically and theoretically—that the spatial dynamics of conflict differ

markedly between sudden-onset disasters and slow-onset disasters such as droughts. Their

effects vary in nature, timing, and spatial extent, implying that each type of disaster warrants

distinct analysis and tailored policy responses.

We highlight the roles of local resource wealth and international emergency aid in shap-

ing the spatial dispersion of post-disaster conflict. First, conflict spillovers following disasters

are larger when neighboring districts exhibit higher agricultural potential, greater mining

wealth, or higher levels of economic development. This pattern is consistent with the notion
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that combatants reallocate their efforts toward areas offering more lootable resources and

rent-seeking opportunities.

Second, emergency aid reverses the baseline pattern. When a disaster triggers assistance

from the Office of U.S. Foreign Disaster Assistance, conflict increases in the disaster struck

district but declines in neighbouring districts. Aid raises local stakes by injecting new,

lootable resources and reduces the incentive to expand operations outward. This finding

echoes Nunn and Qian’s (2014) evidence that food aid can concentrate rather than diffuse

violence.

A simple network model rationalises these results. Players allocate effort across multiple

contests linked by a network. A negative shock reduces the prize in one district; the central

combatant shifts effort to other contests, peripheral actors respond, and conflict migrates

along the network.

This novel perspective on how conflict spreads after a disaster also provides some insights

for policy-makers and international organisations. Because disasters displace rather than

eliminate violence, security and peace-keeping forces should be positioned not only in high-

risk districts but also in adjacent, economically attractive areas where conflict is likely to

resurface. Emergency relief must be paired with transparent distribution, local monitoring,

and, where feasible, cash-for-work schemes that limit the stock of lootable goods. Without

such safeguards, aid can intensify fighting at the epicentre. Disaster-response protocols

should incorporate network maps of district connectivity (roads, trade flows, ethnic links)

to forecast where violence is most likely to spread and to allocate resources accordingly.

Taken together, our findings suggest that disaster management and conflict mitigation

cannot be designed in isolation. Relief that stabilises one district may inadvertently ignite

violence next door unless policymakers account for the underlying network of contests that

links localities across space.

38



References

Acemoglu, D., C. Garcia-Gimeno, and J. A. Robinson. (2015), “State capacity and economic

development: A network approach,” American Economic Review, 105(8), 2364–2409.

Amarasinghe, A., R. Hodler, P. A. Raschky and Y. Zenou. (2024), “Key players in economic

development,” Journal of Economic Behaviour and Organization, 223, 40–56.

Angrist, J. D. and J-S. Pischke (2009), Mostly harmless econometrics: An empiricist’s

companion, Princeton: Princeton University Press.

Anselin, L. (1988), Spatial Econometrics: Methods and Models, Kluwer, Dordrecht.

Anselin, L., J. Le Gallo and H. Jayet (2006), Spatial panel econometrics. In: Matyas L, P.

Sevestre (eds) The Econometrics of Panel Data, Fundamentals and Recent Developments

in Theory and Practice, 3rd ed. Kluwer, Dordrecht, pp 901–969.

Baker, A. C., D. F. Larcker and C. CY Wang (2021), “How much should we trust staggered

difference-in-differences estimates?” Journal of Financial Economics, 144(2), 370—395.

Brakenridge, G. R (2025) Global Active Archive of Large Flood Events. DFO - Flood Ob-

servatory, University of Colorado, USA. http://floodobservatory.colorado.edu/ Archives/

(Accessed March 2025).

Berman, N. and M. Couttenier (2015), “External shocks, internal shots: The geography of

civil conflicts,” Review of Economics and Statistics, 97(4), 758–776.

Berman, N., M. Couttenier, D. Rohner and M. Thoenig (2017), “This mine is mine! How

minerals fuel conflicts in Africa,” American Economic Review, 107(6), 1564–1610.

Berman, N., M. Couttenier and R. Soubeyran (2021), “Fertile ground for conflict,” Journal

of the European Economic Association, 19(1): 82–127.

Besley, T. J. and T. Persson (2011), “The logic of political violence,” Quarterly Journal of

39



Economics, 126(3): 1411–1446.

Blattman, C. and E. Miguel (2010), “Civil war,” Journal of Economic Literature, 48(1),

3–57.

Bocher, O., M. Faure, Y. Long and Y. Zenou (2020), “Perceived competition in networks,”

CEPR Discussion Paper No. 15582.

Bonfatti, R., Y. Gu and S. Poelhekke (2020) “Priority Roads: The political economy of

Africa’s interior-to-coast roads,” CEPR Discussion Paper No. DP15354.

Borusyak, K., X. Jaravel and J. Spiess (2024) “Revisiting event study designs: Robust and

efficient estimation,” Review of Economic Studies 91(6), 3253–3285.

Bosker, M. and J. de Ree (2014), “Ethnicity and the spread of civil war,” Journal of Devel-

opment Economics, 108, 206—221.

Brangewitz, S., B. M. Djawadi, A. Endres and B. Hoyer (2019) “Network formation and

disruption - an experiment. Are efficient networks too complex?,” Journal of Economic

Behavior and Organization, 157, 708–734.

Buhaug, H. and K. Gleditsch (2008), “Contagion or confusion? Why conflicts cluster in

space, ” International Studies Quarterly, 52(2), 215–233.

Burke, M., Hsiang, S. M. and Miguel, E. (2015), “Climate and Conflict,” Annual Review of

Economics, 7, 577–617.

Callaway, B. and P. Sant’Anna (2021), “Difference-in-differences with multiple time periods,”

Journal of Econometrics, 225(2), 200–230.

Cederman L-E. and M. Vogt (2017), “Dynamics and logics of civil war,” Journal of Conflict

Resolution, 61(9), 1992–2016.

Cervellati, M., E. Esposito and U. Sunde (2022), “Epidemic shocks and civil violence: Ev-

40



idence from malaria outbreaks in Africa,” Review of Economics and Statistics, 104 (4),

780–796.

Chalfin, A. J. and McCrary, (2017), “Criminal Deterrence: A Review of the literature,”

Journal of Economic Literature, 55(1), 5–48.
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Figure A.2: Spatial distribution of conflicts and natural disasters in Africa

(a) Conflicts
(b) Natural Disasters

Notes: Panel (a) shows the point locations of battle events in Africa, as per the UCDP data set. Panel (b) shows the district
level dispersion of natural disasters in Africa, as per the EM-DAT data set. Darker colors indicate districts more prone to
natural disasters over the sample period.
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Figure A.3: Diagnostic tests - Weights attached to each treatment as per De Chaisemartin
and D’Haultfœuille (2020)

Panel A: Treatment DISit

Panel B: Treatment NDISit (based on inverse geographic distance)

Note: Figure shows the distribution of the weights attached to each ATE used in this study. This proce-
dure was conducted using Stata’s twowayfeweights estimator developed in line with De Chaisemartin and
D’Haultfœuille (2020).
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Figure A.4: Temporal dynamics

Panel A: Independent Variable DISit

Panel B: Independent Variable NDISit (based on inverse geographic distance)

Note: Figure shows the direct and spillover effect of natural disasters in district i on conflict, for the 3 years before and after
the natural disaster. The unit of observation is a district-year. Vertical lines depict the 95% level confidence intervals, based
on Conley (1999) clustered standard errors, accounting for spatial correlation up to 500km and temporal correlation up to 3
periods.
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A.2 Tables

Table A.1: Disasters by type

Disaster Type Frequency

F lood 886

Drought 174

Storm 141

Landslide 52

Earthquake 27

Wildfire 25

Extreme Temp 13

V olcano 5

Wave/Surge 3

Total 1,326

Table A.2: Descriptive statistics for key variables

Observations Mean Std. Dev. Min. Max.

Conflict 190,208 0.0367 0.1880 0 1
DIS 190,208 0.0580 0.2337 0 1
Conflict if DIS >0 11,025 0.0309 0.1731 0 1
Conflict if DIS=0 179,183 0.0370 0.1888 0 1

Spillover effects
NDIS 190,208 0.4526 0.4978 0 1
Conflict if NDIS >0 86,094 0.0376 0.1902 0 1
Conflict if NDIS=0 104,114 0.0359 0.1861 0 1

Conflict and DIS are binary variables indicating the presence (=1) or absence (=0) of a
battle resulting in at least one death, and a natural disaster event, respectively, in district
i in in the given time unit. NDIS is a binary variable indicating the presence (=1) or
absence (=0) of a natural disaster event, in at least one of the neighbouring districts,
where neighbourhood is defined as per the altitude-adjusted inverse geodesic network.
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Table A.3: Correlation between natural disaster indicators and district level characteristics
- Direct effect)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Dis LargeDis SmallDis ClimDis GeoDis F lood Storm Quake Slide Wildfire Drought

Area -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

PopDensity 0.0000** 0.0000*** 0.0000 0.0000** -0.0000 0.0000** -0.0000 0.0000 -0.0000 -0.0000 -0.0000**
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Temperature 0.0578*** 0.0442*** 0.0419*** 0.0581*** 0.0016 0.0594*** -0.0144 0.0006 0.0013 -0.0112 0.0123
(0.0104) (0.0123) (0.0100) (0.0104) (0.0013) (0.0102) (0.0102) (0.0010) (0.0011) (0.0084) (0.0115)

Precipitation 0.0016 0.0014 0.0007 0.0015 0.0003** 0.0013 0.0011* 0.0002* 0.0001* 0.0007 0.0001
(0.0010) (0.0010) (0.0009) (0.0010) (0.0001) (0.0010) (0.0006) (0.0001) (0.0001) (0.0005) (0.0008)

Elevation 0.0003*** 0.0002*** 0.0003*** 0.0003*** 0.0001** 0.0003*** -0.0000 0.0000* 0.0000* 0.0000 0.0002***
(0.0001) (0.0001) (0.0001) (0.0001) (0.0000) (0.0001) (0.0000) (0.0000) (0.0000) (0.0000) (0.0001)

Ruggedness -0.0003 -0.0006 0.0004 -0.0003 -0.0000 -0.0004 0.0002 0.0000 -0.0000 0.0004 0.0004
(0.0005) (0.0007) (0.0005) (0.0005) (0.0001) (0.0006) (0.0002) (0.0001) (0.0000) (0.0003) (0.0004)

NTL 0.0024 0.0023 0.0038* 0.0024 0.0001 0.0029 0.0017 -0.0000 0.0002 0.0027 -0.0007
(0.0020) (0.0021) (0.0020) (0.0020) (0.0004) (0.0019) (0.0022) (0.0003) (0.0002) (0.0023) (0.0021)

MineCount 0.0164 0.0274 0.0274** 0.0159 0.0078* 0.0158 0.0978** 0.0065** 0.0016 0.0621*** 0.0304
(0.0215) (0.0255) (0.0133) (0.0212) (0.0043) (0.0210) (0.0407) (0.0029) (0.0039) (0.0137) (0.0266)

CroplandShare 0.1683* 0.1357 0.1608** 0.1600* 0.0154 0.1777* -0.0306 0.0150 0.0004 -0.0586* -0.0485
(0.0872) (0.1076) (0.0775) (0.0903) (0.0167) (0.0904) (0.0653) (0.0159) (0.0086) (0.0301) (0.1201)

PrimaryRoadKM 0.0010*** 0.0010** 0.0002 0.0010*** 0.0001** 0.0010*** 0.0004 0.0000 0.0001 0.0004** 0.0003
(0.0003) (0.0004) (0.0004) (0.0003) (0.0001) (0.0003) (0.0003) (0.0001) (0.0001) (0.0002) (0.0006)

SecondaryRoadKM 0.0006*** 0.0007*** 0.0008*** 0.0006*** -0.0001*** 0.0006*** 0.0006** -0.0001** -0.0000 0.0005*** 0.0008**
(0.0001) (0.0001) (0.0001) (0.0001) (0.0000) (0.0001) (0.0003) (0.0000) (0.0000) (0.0001) (0.0003)

Distancetocapital 0.0000** 0.0000** 0.0000** 0.0000** 0.0000 0.0000** 0.0000** 0.0000 0.0000 0.0000 0.0000
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Port -0.0402 -0.0406 -0.0111 -0.0383 0.0126 -0.0547 -0.0057 -0.0057 0.0122 -0.0278 0.0205
(0.0406) (0.0430) (0.0399) (0.0406) (0.0125) (0.0428) (0.0287) (0.0058) (0.0107) (0.0277) (0.0348)

PowerP lant 0.0143 0.0130 0.0236* 0.0133 0.0110 0.0133 0.0069 0.0059 0.0034 0.0075 0.0010
(0.0100) (0.0114) (0.0124) (0.0101) (0.0066) (0.0100) (0.0079) (0.0052) (0.0030) (0.0085) (0.0051)

Pre− ColonialInst. -0.1064*** -0.1140** -0.1101** -0.1025** -0.0108 -0.0986** -0.0786* -0.0070 -0.0037 -0.0168 -0.0399
(0.0394) (0.0431) (0.0455) (0.0392) (0.0107) (0.0387) (0.0403) (0.0085) (0.0050) (0.0114) (0.0405)

Observations 5,682 5,682 5,682 5,682 5,682 5,682 5,682 5,682 5,682 5,682 5,682
R-squared 0.3878 0.3044 0.2024 0.3831 0.0516 0.3885 0.2176 0.0259 0.0295 0.2055 0.1681

Outcome variables are binary variables indicating the presence (=1) or absence (=0) of a natural disaster event in the given district over the sample period.
Standard errors are clustered at the country level. *** p<0.01, ** p<0.05, * p<0.1
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Table A.4: Correlation between natural disaster indicators and district level characteristics
- Spillover effect)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
N(Dis) N(LargeDis) N(SmallDis) N(ClimDis) N(GeoDis) N(Flood) N(Storm) N(Quake) N(Slide) N(Wildfire) N(Drought)

Area -0.0000* -0.0000** -0.0000 -0.0000* -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

PopDensity 0.0000 0.0000 0.0000 0.0000 0.0000*** -0.0000 0.0000 -0.0000 0.0000*** 0.0000** -0.0000*
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Temperature 0.0048 0.0048 0.0742*** 0.0048 0.0064 0.0313*** 0.0312* 0.0067 0.0073 -0.0480*** 0.0829***
(0.0041) (0.0041) (0.0084) (0.0041) (0.0139) (0.0072) (0.0175) (0.0109) (0.0131) (0.0104) (0.0101)

Precipitation 0.0010* 0.0010** 0.0034*** 0.0010* 0.0061*** 0.0023* 0.0036** 0.0015** 0.0059*** 0.0019** -0.0010
(0.0005) (0.0005) (0.0009) (0.0005) (0.0008) (0.0012) (0.0016) (0.0007) (0.0008) (0.0007) (0.0017)

Elevation 0.0001*** 0.0001*** 0.0004*** 0.0001*** 0.0003*** 0.0002*** 0.0003*** 0.0005*** 0.0003*** -0.0002*** 0.0006***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Ruggedness -0.0005* -0.0005* -0.0004 -0.0005* -0.0011*** -0.0011** -0.0007 -0.0008* -0.0010*** 0.0004 0.0002
(0.0003) (0.0003) (0.0005) (0.0003) (0.0003) (0.0005) (0.0006) (0.0005) (0.0004) (0.0006) (0.0006)

NTL -0.0001 -0.0001 0.0011 -0.0001 0.0003 0.0027 -0.0014 0.0019 0.0006 0.0024 0.0022
(0.0013) (0.0013) (0.0022) (0.0013) (0.0017) (0.0022) (0.0031) (0.0021) (0.0018) (0.0019) (0.0027)

MineCount 0.0118 0.0070 0.0447 0.0118 0.0355 0.0219 0.0513 0.0795** 0.0090 0.0419 0.0418
(0.0097) (0.0073) (0.0400) (0.0097) (0.0248) (0.0229) (0.0515) (0.0379) (0.0193) (0.0363) (0.0388)

CroplandShare 0.0741 0.0740 0.0343 0.0741 0.1134 0.1227 0.1982** 0.2004* 0.1197 -0.0836 0.1356
(0.0552) (0.0553) (0.0757) (0.0552) (0.1170) (0.1006) (0.0979) (0.1093) (0.1134) (0.1067) (0.1029)

PrimaryRoadKM 0.0001** 0.0001** 0.0006* 0.0001** 0.0009 0.0003* 0.0008 0.0004 0.0008* 0.0010 0.0008**
(0.0001) (0.0001) (0.0003) (0.0001) (0.0006) (0.0002) (0.0007) (0.0006) (0.0004) (0.0006) (0.0003)

SecondaryRoadKM 0.0001** 0.0001** 0.0005*** 0.0001** 0.0003 0.0002** 0.0002 -0.0000 0.0004*** 0.0004 0.0003*
(0.0000) (0.0000) (0.0001) (0.0000) (0.0002) (0.0001) (0.0003) (0.0003) (0.0001) (0.0003) (0.0002)

Distancetocapital 0.0000 0.0000 0.0000 0.0000 -0.0000 0.0000 0.0000 0.0000 0.0000 -0.0000** 0.0000
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Port -0.0298 -0.0281 -0.0332 -0.0298 -0.0615 -0.0010 -0.0076 -0.0069 -0.0473 -0.1286*** 0.0467
(0.0202) (0.0200) (0.0602) (0.0202) (0.0560) (0.0285) (0.0311) (0.0244) (0.0553) (0.0400) (0.0418)

PowerP lant -0.0243* -0.0247* 0.0036 -0.0243* 0.0240** -0.0042 -0.0022 0.0071 0.0182 -0.0284** -0.0046
(0.0141) (0.0140) (0.0078) (0.0141) (0.0117) (0.0168) (0.0084) (0.0063) (0.0113) (0.0137) (0.0078)

Pre− ColonialInst. -0.0140 -0.0149 -0.0325 -0.0140 0.0422 -0.0992 -0.1150** 0.0030 0.0865 -0.0632 -0.1129**
(0.0148) (0.0146) (0.0292) (0.0148) (0.0553) (0.0702) (0.0490) (0.0343) (0.0519) (0.0781) (0.0552)

Observations 5,682 5,682 5,682 5,682 5,682 5,682 5,682 5,682 5,682 5,682 5,682
R-squared 0.1187 0.1206 0.7658 0.1187 0.4685 0.3790 0.3320 0.3699 0.4547 0.1763 0.4924

Outcome variables are binary variables indicating the presence (=1) or absence (=0) of a natural disaster event in the given district over the sample period.
Standard errors are clustered at the country level. *** p<0.01, ** p<0.05, * p<0.1
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Table A.5: Temporal and spatial autocorrelation of natural disasters

(1) (2) (3)
DISi,t NDISi,t DISi,t

DISi,t−1 0.0021 0.0087
(0.0133) (0.0132)

DISi,t−2 -0.0203
(0.0150)

DISi,t−3 -0.0085
(0.0133)

NDISi,t 0.0176***
(0.0040)

NDISi,t−1 0.0103 0.0048
(0.0199) (0.0066)

NDISi,t−2 -0.0011
(0.0213)

NDISi,t−3 -0.0171
(0.0155)

Observations 172,376 172,376 184,264
District FE YES YES YES
Country× Year FE YES YES YES

DIS is a binary variable indicating the presence (=1) or ab-
sence (=0) of a natural disaster event in the given district in
the given time period. NDIS is a binary variable indicating
the presence (=1) or absence (=0) of a natural disaster event,
in any one of the district’s neighbours, within the given time
period. Neighbourhood is based on the altitude-adjusted in-
verse distance matrix, truncated at 500km. Disasters exclude
droughts. Conley (1999) clustered standard errors, accounting
for spatial correlation up to 500km and temporal correlation up
to 1 period are in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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A.3 Direct effect of natural disasters on conflict at the district×month

level

The EM-DAT data contains information about the date of the natural disaster event and we

use this information to build a dataset at the district×month level. Figure A.5 presents the

results of an event study analysis to estimate the direct effect of natural disasters on conflict

using monthly data. We observe that the direct effect materialises in the contemporary

month itself, and persists for up to two years.

At the district×year level estimates in Table 1, the direct effect is not statistically sig-

nificant in the contemporary year, and only becomes statistically significant in t + 1. To

examine this discrepancy, we conduct a test in Table A.6, where we re-estimate the direct

effect of natural disasters on conflict at the district×year level, and add the different sets

of fixed effects stepwise. In Column (1) we include district fixed effects only, and the effect

is negative and statistically significant, indicating that the effect materialises contempora-

neously. However, when we add country×year fixed effects in Column (2), the statistical

significance disappears. In Column (2) we include both sets of fixed effects along with pre-

vious period’s natural disaster indicator. Here, the negative effect is statistically significant

at the 10% level.

These results suggest that the pattern of negative effect of natural disasters on conflict

does exist in the contemporary time period, but the inclusion of a relatively conservative set

of country×year fixed effects results in a p-value below the standard threshold of statistical

significance.
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Figure A.5: Event study of the effect of natural disasters on conflict - at the district×month
level

Notes: Figure shows event study estimates of the effect of natural disasters on conflict, at the district×month level. Estimates
include district and year×month fixed effects. Dots show the estimated coefficients while vertical lines show the 90% confidence
intervals based on standard errors clustered at the country×year level.
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Table A.6: Direct effects of natural disasters on conflict at the year level - Stepwise addition
of controls

(1) (2) (3)
Conflicti,t Conflicti,t Conflicti,t

DISi,t -0.0129*** -0.0023 -0.0026
(0.0046) (0.0035) (0.0035)

DISi,t−1 -0.0053*
(0.0030)

Observations 190,208 190,208 184,264
District FE YES YES YES
Country× Year FE NO YES YES

Conflict and DIS are binary variables indicating the presence
(=1) or absence (=0) of a battle resulting in at least one death,
and natural disaster event, respectively, in the given district in
the given time period. Disasters exclude droughts. () present
country×year clustered standard errors. *** p<0.01, ** p<0.05,
* p<0.1

B Robustness checks
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Table B.1: Dynamic difference-in-differences estimates as per de Chaisemartin and
D’Haultfœuille (2024)

Conflicti,t
Panel 1: Direct Panel 2: Spillover

Coeff. SE Coeff. SE

DISi,t -0.0067** (0.0033)
DISi,t−1 -0.0070* (0.0041)

Avg Direct Effect -0.0122** (0.0061)

NDISi,t 0.0082** (0.0041)
NDISi,t−1 0.0089* (0.0054)

Avg Spillover Effect 0.0120* (0.0062)

This table presents dynamic difference-in-differences estimates as per de
Chaisemartin and D’Haultfœuille (2024), estimated separately for direct and
spillover treatments. Total number of observations considered is 184,264.
Conflicti,t is a binary variable indicating the presence (=1) or absence (=0)
of a battle resulting in at least one death in district i in year y. DISi,t and
DISi,t−1 are binary variables indicating the presence (=1) or absence (=0)
of a natural disaster event in district i in years y and t − 1, respectively.
NDISi,t is a binary variable indicating the presence (=1) or absence (=0)
of a natural disaster event, in any one of district i’s neighbours in year y.
Neighbourhood is based on the altitude-adjusted inverse geodesic distance
network truncated at 500km. For the direct effect estimation, NDISi,t and
Conflicti,t−1 are included as controls. For the spillover effect estimation
DISi,t and Conflicti,t−1 are included as controls. Estimates include dis-
trict and year fixed effects. Disasters exclude droughts. The effects were
calculated using the didmultiplegtdyn command in Stata 18. *** p<0.01,
** p<0.05, * p<0.1
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Table B.2: Alternative spatial models

(1) (2)
Conflicti,t Conflicti,t

GNS SLX

DISi,t -0.0019 -0.0028
{0.0027} {0.0030}
(0.0031) (0.0035)

DISi,t−1 -0.0049** -0.0056**
{0.0025} {0.0028}
(0.0025) (0.0029)

NDISi,t 0.0044 0.0055*
{0.0028} {0.0033}
(0.0029) (0.0035)

NDISi,t−1 0.0097*** 0.0104***
{0.0028} {0.0033}
(0.0032) (0.0037)

Conflicti,t−1 0.2315***
{0.0105}
(0.0126)

Observations 184,264 184,264
Distance Cut-off 500km 500km
District FE YES YES
Country× Year YES YES
NConflicti,t YES NA
NConflicti,t−1 YES NA

Conflicti,t is a binary variable indicating the pres-
ence (=1) or absence (=0) of a battle resulting in
at least one death in district i in year t. DISi,t
and DISi,t−1 are binary variables indicating the
presence (=1) or absence (=0) of a natural disas-
ter event in district i in years y and t − 1, respec-
tively. NDISi,t (NConflicti,t) are binary variable
indicating the presence (=1) or absence (=0) of a
natural disaster event (battle), in any one of dis-
trict i’s neighbours in year t. Neighbourhood is
based on the altitude-adjusted inverse geodesic dis-
tance network, truncated at 500km. Disasters ex-
clude droughts. {} present Conley (1999) clustered
standard errors, accounting for spatial correlation
up to 500km and temporal correlation up to 1 pe-
riod, while ( ) present standard errors clustered at
the country×year level. *** p<0.01, ** p<0.05, *
p<0.1
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Table B.3: Effect of natural disasters including droughts

(1) (2)
Conflicti,t Conflicti,t

DISi,t -0.0018 -0.0018
(0.0029) (0.0029)

DISi,t−1 -0.0018 -0.0019
(0.0029) (0.0028)

NDISi,t 0.0081***
(0.0031)

NDISi,t−1 0.0112***
(0.0032)

Observations 184,264 184,264
Distance Cutoff NA 500km
District FE YES YES
Country× Year FE YES YES
NConflicti,t NA YES
NConflicti,t−1 NA YES

Conflict and DIS are binary variables indicating
the presence (=1) or absence (=0) of a conflict re-
sulting in at least one death, and natural disaster
event, respectively, in the given district in the given
time period. NDIS (NConflict) is a binary vari-
able indicating the presence (=1) or absence (=0) of
a natural disaster event (conflict ), in any one of the
district’s neighbours, within the given time period.
Neighbourhood is based on the altitude-adjusted
inverse distance matrix, truncated at 500km. Con-
ley (1999) clustered standard errors, accounting for
spatial correlation up to 500km and temporal cor-
relation up to 1 period, are in parentheses. ***
p<0.01, ** p<0.05, * p<0.1
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Table B.4: Restricting the sample from 2000-2020

(1) (2)
Conflicti,t Conflicti,t

DISi,t -0.0012 -0.0010
(0.0037) (0.0037)

DISi,t−1 -0.0051 -0.0053
(0.0032) (0.0032)

NDISi,t 0.0020
(0.0038)

NDISi,t−1 0.0100***
(0.0038)

Observations 118,880 118,880
Distance Cutoff NA 500km
District FE YES YES
Country× Year FE YES YES
NConflicti,t NA YES
NConflicti,t−1 NA YES

Conflict and DIS are binary variables indicating
the presence (=1) or absence (=0) of a conflict re-
sulting in at least one death, and natural disaster
event, respectively, in the given district in the given
time period. NDIS (NConflict) is a binary vari-
able indicating the presence (=1) or absence (=0) of
a natural disaster event (conflict ), in any one of the
district’s neighbours, within the given time period.
Neighbourhood is based on the altitude-adjusted
inverse distance matrix, truncated at 500km. Dis-
asters exclude droughts. Sample is restricted to
years 2000-2020. Conley (1999) clustered stan-
dard errors, accounting for spatial correlation up
to 500km and temporal correlation up to 1 period,
are in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table B.5: Estimates by disaster category

(1) (2) (3) (4)
Conflicti,t Conflicti,t Conflicti,t Conflicti,t

Disaster Category Large Small Climatic Geologic

DISi,t -0.0014 -0.0021 -0.0023 -0.0123
(0.0035) (0.0043) (0.0030) (0.0233)

DISi,t−1 -0.0032 -0.0061 -0.0059** 0.0049
(0.0034) (0.0039) (0.0028) (0.0200)

NDISi,t 0.0044 0.0064** 0.0062* 0.0147
(0.0042) (0.0027) (0.0033) (0.0144)

NDISi,t−1 0.0172*** 0.0013 0.0125*** 0.0017
(0.0040) (0.0028) (0.0033) (0.0114)

Observations 155,494 139,480 182,576 97,752
Distance Cut-off 500km 500km 500km 500km
District FE YES YES YES YES
Country× Year FE YES YES YES YES
NConflicti,t YES YES YES YES
NConflicti,t−1 YES YES YES YES

Conflicti,t is a binary variable indicating the presence (=1) or absence (=0)
of a conflict resulting in at least one death in district i in year t. DISi,t and
DISi,t−1 are binary variables indicating the presence (=1) or absence (=0) of
a natural disaster event in district i in years y and t−1, respectively. NDISi,t
(NConflicti,t) are binary variable indicating the presence (=1) or absence
(=0) of a natural disaster event (conflict), in any one of district i’s neigh-
bours in year t. Large disasters are those that either (i) kills at least 1000
people, or (ii) affects at least 100,000 people in total, or (iii) causes damages
of at least one billion (real) dollars, while remaining disasters are classified
as Small. Geologic disasters include landslides, and earthquakes. Climatic
disasters include floods, cyclones, hurricanes and storms. Neighbourhood is
based on the altitude-adjusted inverse geodesic distance network, truncated
at 500km. Disasters exclude droughts. Conley (1999) clustered standard er-
rors, accounting for spatial correlation up to 500km and temporal correlation
up to 1 period, are in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table B.6: Estimates by disaster type

(1) (2) (3) (4) (5) (6)
Conflicti,t Conflicti,t Conflicti,t Conflicti,t Conflicti,t Conflicti,t

DisasterType F lood Landslide Earthquake Drought Storm Wildfire

DISi,t -0.0038 0.0130 -0.0231 0.0049 0.0165 -0.0055
(0.0031) (0.0344) (0.0210) (0.0075) (0.0108) (0.0160)

DISi,t−1 -0.0071** -0.0137 -0.0061 0.0227** 0.0066 0.0008
(0.0029) (0.0252) (0.0255) (0.0102) (0.0095) (0.0183)

NDISi,t 0.0085** -0.0015 0.0290** 0.0116* -0.0046 0.0130*
(0.0036) (0.0235) (0.0136) (0.0070) (0.0052) (0.0073)

NDISi,t−1 0.0150*** -0.0042 0.0107 0.0234*** 0.0027 0.0200**
(0.0036) (0.0158) (0.0111) (0.0081) (0.0050) (0.0082)

Observations 173,266 90,997 87,744 107,325 106,166 87,390
Distance Cut-off 500km 500km 500km 500km 500km 500km
District FE YES YES YES YES YES YES
Country× Year FE YES YES YES YES YES YES
NConflicti,t YES YES YES YES YES YES
NConflicti,t−1 YES YES YES YES YES YES

Conflicti,t is a binary variable indicating the presence (=1) or absence (=0) of a conflict resulting in at
least one death in district i in year t. DISi,t and DISi,t−1 are binary variables indicating the presence
(=1) or absence (=0) of a natural disaster event in district i in years y and t − 1, respectively. NDISi,t
(NConflicti,t) are binary variable indicating the presence (=1) or absence (=0) of a natural disaster event
(conflict), in any one of district i’s neighbours in year t. Neighbourhood is based on the altitude-adjusted
inverse geodesic distance network, truncated at 500km. Disasters exclude droughts. Conley (1999) clustered
standard errors, accounting for spatial correlation up to 500km and temporal correlation up to 1 period, are
in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table B.7: Direct and spillover effects of SPEI

(1) (2)
Conflicti,t Conflicti,t

SPEIi,t 0.0121*** 0.0029
(0.0041) (0.0044)

SPEIi,t−1 0.0042 -0.0045
(0.0039) (0.0042)

NSPEIi,t 0.0236***
(0.0082)

NSPEIi,t−1 0.0219***
(0.0081)

Observations 172,376 172,376
Distance Cut-off NA 500km
District FE YES YES
Country× Year FE YES YES
NConflicti,t NA YES
NConflicti,t−1 NA YES

Conflict is a binary variable indicating the pres-
ence (=1) or absence (=0) of a conflict result-
ing in at least one death in the given district in
the given time period. SPEI is the Standardised
Precipitation-Evapotranspiration Index for the dis-
trict, while NSPEI is the spatial lag of the SPEI
index for district’s neighbours for the given year.
NConflict is a binary variable indicating the pres-
ence (=1) or absence (=0) of a conflict in any one of
the district’s neighbours. Neighbourhood is based
on the altitude-adjusted inverse distance matrix,
truncated at 500km. Conley (1999) clustered stan-
dard errors, accounting for spatial correlation up to
500km and temporal correlation up to 1 period, are
in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table B.8: Estimates by conflict type

(1) (2) (3)
Conflicti,t Conflicti,t Conflicti,t

Conflict Type State Non− State Onesided

DISi,t -0.0002 -0.0002 -0.0007
(0.0022) (0.0019) (0.0019)

DISi,t−1 -0.0034* -0.0005 -0.0036*
(0.0020) (0.0019) (0.0019)

NDISi,t 0.0031 0.0024 -0.0002
(0.0028) (0.0016) (0.0021)

NDISi,t−1 0.0049* 0.0041** 0.0032
(0.0027) (0.0016) (0.0022)

Observations 184,264 184,264 184,264
Distance Cut-off 500km 500km 500km
District FE YES YES YES
Country× Year FE YES YES YES
NConflicti,t YES YES YES
NConflicti,t−1 YES YES YES

Conflicti,t is a binary variable indicating the presence (=1) or absence
(=0) of a conflict resulting in at least one death in district i in year
t. DISi,t and DISi,t−1 are binary variables indicating the presence
(=1) or absence (=0) of a natural disaster event in district i in years
y and t − 1, respectively. NDISi,t (NConflicti,t) are binary vari-
able indicating the presence (=1) or absence (=0) of a natural disaster
event (conflict), in any one of district i’s neighbours in year t. Neigh-
bourhood is based on the altitude-adjusted inverse geodesic distance
network, truncated at 500km. Disasters exclude droughts. Conley
(1999) clustered standard errors, accounting for spatial correlation up
to 500km and temporal correlation up to 1 period, are in parentheses.
*** p<0.01, ** p<0.05, * p<0.1
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Table B.9: ACLED vs UCDP comparison

(1) (2) (3)
ACLED UCDP Pooled

V iolencei,t V iolencei,t V iolencei,t

DISi,t -0.0014 -0.0019 -0.0008
(0.0042) (0.0033) (0.0046)

DISi,t−1 -0.0013 -0.0058* -0.0026
(0.0042) (0.0031) (0.0045)

NDISi,t 0.0108** 0.0045 0.0118**
(0.0042) (0.0037) (0.0046)

NDISi,t−1 0.0102** 0.0113*** 0.0149***
(0.0042) (0.0036) (0.0045)

Observations 136,712 136,712 136,712
Distance Cutoff 500km 500km 500km
District FE YES YES YES
Country× Year FE YES YES YES
N(Outcome)i,t YES YES YES
N(Outcome)i,t−1 YES YES YES

DIS is a binary variable indicating the presence (=1) or absence
(=0) of a natural disaster event in the given district in the given
time period. The outcome variable in Column (1) is a binary
variable indicating the presence (=1) or absence (=0) of a vio-
lent event as per the ACLED database. The outcome variable
in Column (2) is a binary variable indicating the presence (=1)
or absence (=0) of a violent event as per the UCDP database,
for the same sample as in Column (1). The outcome variable
in Column (3) is a binary variable indicating the presence (=1)
or absence (=0) of a violent event as per either the ACLED or
the UCDP database. NDIS and N(Outcome) are binary vari-
ables indicating the presence (=1) or absence (=0) of a natural
disaster event or the outcome variable of interest, respectively,
in any one of the district’s neighbours. Neighbourhood is based
on the altitude-adjusted inverse distance matrix, truncated at
500km. Conley (1999) clustered standard errors, accounting for
spatial correlation up to 500km and temporal correlation up to
1 period, are in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table B.10: Analysis for districts with area ≤ 55km2 and using Dartmouth Flood Observa-
tory (DFO) data at the Grid cell level

Districts ≤ 55km2 area DFO data & Grid cells
(1) (2) (3) (4)

Conflicti,t Conflicti,t Conflicti,t Conflicti,t

DISi,t 0.0004 0.0005
(0.0034) (0.0034)

DISi,t−1 -0.0052* -0.0051*
(0.0031) (0.0031)

NDISi,t 0.0038 0.0039
(0.0041) (0.0041)

NDISi,t−1 0.0101** 0.0102**
(0.0040) (0.0040)

Floodi,t -0.0075 -0.0075
(0.0074) (0.0074)

Floodi,t−1 -0.0106 -0.0107
(0.0079) (0.0079)

NFloodi,t 0.0035** 0.0033**
(0.0014) (0.0014)

NFloodi,t−1 0.0039*** 0.0038***
(0.0014) (0.0014)

Observations 156,922 156,922 320,385 320,385
Distance Cut-off 500km 500km 500km 500km
District/Grid cell FE YES YES YES YES
Country× Year FE YES YES YES YES
NConflicti,t NO YES NO YES
NConflicti,t−1 NO YES NO YES

Columns (1) and (2) replicate the baseline analysis for districts with area ≤
55km2. Columns (3) and (4) replicate the baseline analysis, at the grid cell
level, using data on floods from the DFO. Conflict, DIS and Flood are binary
variables indicating the presence (=1) or absence (=0) of a battle resulting in
at least one death, natural disaster event or flood, respectively, in the given
district in the given time period. NDIS, NConflict and NFlood are binary
variables indicating the presence (=1) or absence (=0) of a natural disaster
event, battle or flood, in any one of the district’s neighbours. Disasters ex-
clude droughts.() present Conley (1999) clustered standard errors, accounting
for spatial correlation up to 500km and temporal correlation up to 1 period.
*** p<0.01, ** p<0.05, * p<0.1
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Table B.11: Conflict onset and termination

(1) (2)
Onseti,t Terminationi,t

DISi,t -0.0018 -0.0007
(0.0015) (0.0014)

DISi,t−1 -0.0025 -0.0003
(0.0016) (0.0015)

Observations 146,805 161,534
District FE YES YES
Country × Year FE YES YES

Onset is a binary indicator = 0 in periods with
no conflict events; = 1 in the first time period
a district experiences a conflict; and missing in
subsequent time periods. Termination is a bi-
nary indicator = 0 in periods of conflict; = 1
in the first period with no conflict; and miss-
ing in subsequent time periods. DIS is a bi-
nary variable indicating the presence (=1) or ab-
sence (=0) of a natural disaster event in the given
district in the given time period. Disasters ex-
clude droughts. Conley (1999) clustered stan-
dard errors, accounting for spatial correlation up
to 500km and temporal correlation up to 1 pe-
riod, are in parentheses. *** p<0.01, ** p<0.05,
* p<0.1
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Table B.12: Alternative distance cut-offs

(1) (2) (3) (4) (5)
Conflicti,t Conflicti,t Conflicti,t Conflicti,t Conflicti,t

DISi,t -0.0016 -0.0032 -0.0028 -0.0025 -0.0027
(0.0026) (0.0027) (0.0028) (0.0029) (0.0030)

DISi,t−1 -0.0047* -0.0057** -0.0059** -0.0058** -0.0056**
(0.0025) (0.0026) (0.0028) (0.0028) (0.0028)

NDISi,t -0.0022 0.0045** 0.0053** 0.0045 0.0057*
(0.0020) (0.0022) (0.0026) (0.0029) (0.0033)

NDISi,t−1 -0.0007 0.0027 0.0054** 0.0086*** 0.0105***
(0.0019) (0.0022) (0.0026) (0.0029) (0.0033)

Observations 184,264 184,264 184,264 184,264 184,264
Distance Cutoff 100km 200km 300km 400km 500km
District FE YES YES YES YES YES
Country× Year FE YES YES YES YES YES
NConflicti,t YES YES YES YES YES
NConflicti,t−1 YES YES YES YES YES

Conflict and DIS are binary variables indicating the presence (=1) or absence (=0) of
a conflict resulting in at least one death, and natural disaster event, respectively, in the
given district in the given time period. NDIS (NConflict) is a binary variable indicating
the presence (=1) or absence (=0) of a natural disaster event (conflict), in any one of the
district’s neighbours, within the given time period. Neighbourhood is based on the altitude-
adjusted inverse distance matrix, truncated at the indicated distance cut-off. Disasters
exclude droughts. Conley (1999) clustered standard errors, accounting for spatial correlation
up to 500km and temporal correlation up to 1 period, are in parentheses. *** p<0.01, **
p<0.05, * p<0.1
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Table B.13: Alternative connectivity networks

(1) (2) (3) (4)
Connectivity Contiguity Ethnicity Roads Inverse Distance

(no altitude adjusment)

Conflicti,t Conflicti,t Conflicti,t Conflicti,t

DISi,t -0.0007 -0.0024 -0.0032 -0.0027
(0.0029) (0.0030) (0.0030) (0.0030)

DISi,t−1 -0.0058** -0.0058** -0.0064** -0.0056**
(0.0028) (0.0028) (0.0028) (0.0028)

NDISi,t -0.0017 -0.0006 0.0053** 0.0057*
(0.0024) (0.0024) (0.0021) (0.0033)

NDISi,t−1 0.0025 0.0019 0.0040* 0.0105***
(0.0025) (0.0025) (0.0021) (0.0033)

Observations 184,264 184,264 184,264 184,264
Distance Cut-off NA NA 500km 500km
District FE YES YES YES YES
Country× Year FE YES YES YES YES
NConflicti,t YES YES YES YES
NConflicti,t−1 YES YES YES YES

Conflict and DIS are binary variables indicating the presence (=1) or absence (=0)
of a battle resulting in at least one death, an d natural disaster event, respectively, in
the given district in the given time period. NDIS (NConflict) is a binary variable
indicating the presence (=1) or absence (=0) of a natural disaster event (battle), in
any one of the district’s neighbours, defined as per contiguity (Column 1), ethnicity
(Column 2), inverse road distance (Column 3) and inverse geodesic distance with no
altitude adjustment (Column 4). The contiguity network identifies neighbours with
whom district i shares a common border. The ethnicity network identifies whether
the majority ethnic group (as per Murdock (1959)) in districts i and j are the same.
The inverse road distance network is based on the Open Street Map data on major
roads in Africa as of 2016, and is truncated at 500km. Disasters exclude droughts.
present Conley (1999) clustered standard errors, accounting for spatial correlation
up to 500km and temporal correlation up to 1 period, while () present country×year
clustered standard errors. *** p<0.01, ** p<0.05, * p<0.1
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Table B.14: Incorporating country connectivity networks

(1) (2) (3) (4) (5)
State Non− State Onesided

Conflicti,t Conflicti,t Conflicti,t Conflicti,t Conflicti,t

DISi,t -0.0019 -0.0016 -0.0001 0.0005 -0.0004
(0.0030) (0.0030) (0.0022) (0.0020) (0.0019)

DISi,t−1 -0.0059** -0.0059** -0.0036* -0.0008 -0.0043**
(0.0028) (0.0028) (0.0020) (0.0019) (0.0019)

NDISi,t -0.0004 -0.0002 -0.0003 -0.0022 0.0011
(within country) (0.0035) (0.0035) (0.0028) (0.0017) (0.0021)

NDISi,t−1 0.0038 0.0042 0.0013 0.0026* 0.0006
(within country) (0.0032) (0.0032) (0.0026) (0.0016) (0.0022)

NDISi,t 0.0039 0.0012 0.0024* -0.0003
(Outside country) (0.0028) (0.0022) (0.0015) (0.0018)

NDISi,t−1 0.0055* 0.0016 0.0021 0.0024
(Outside country) (0.0028) (0.0022) (0.0015) (0.0019)

Observations 184,264 184,264 184,264 184,264 184,264
Distance Cut-off 500km 500km 500km 500km 500km
District FE YES YES YES YES YES
Country× Year FE YES YES YES YES YES
NConflicti,t YES YES YES YES YES
NConflicti,t−1 YES YES YES YES YES

Conflict andDIS are binary variables indicating the presence (=1) or absence (=0) of a battle resulting
in at least one death, an d natural disaster event, respectively, in the given district in the given time
period. NDIS (within country) is a binary variable indicating the presence (=1) or absence (=0)
of a natural disaster event, in any one of the district’s neighbours, within 500km, and within country
borders. NDIS outside country) is a binary variable indicating the presence (=1) or absence (=0)
of a natural disaster event, in any one of the district’s neighbours,within 500km but outside country
borders. Disasters exclude droughts. () present Conley (1999) clustered standard errors, accounting
for spatial correlation up to 500km and temporal correlation up to 1 period. *** p<0.01, ** p<0.05,
* p<0.1
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Table B.15: Natural disasters and economic activity

(1) (2)
Lighti,t Conflicti,t

DISi,t -0.0215 -0.0024
(0.0258) (0.0027)

DISi,t−1 0.0066 -0.0057**
(0.0198) (0.0025)

NDISi,t 0.0260 0.0043
(0.0244) (0.0028)

NDISi,t−1 -0.0083 0.0097***
(0.0256) (0.0029)

Observations 166,432 166,432
Distance Cutoff 500km 500km
District FE YES YES
Country× Year FE YES YES
Controls YES YES

Disaster is a binary variable indicating the pres-
ence (=1) or absence (=0) of a natural disaster
event in the given district in the given time pe-
riod. NDIS is a binary variable indicating the
presence (=1) or absence (=0) of a natural dis-
aster event, in any one of the district’s neigh-
bours, within the given time period. Neighbour-
hood is based on the altitude-adjusted inverse dis-
tance matrix, truncated at 500km. Light repre-
sents the average value of night-time lights in the
given district for the given time period. Con-
trols for Column (1) are NLighti,t, NLighti,t−1

and Lighti,t−1. Controls for Column (2) are
Lighti,t, Conflicti,t−1, NLighti,t, NLighti,t−1,
NConflicti,t and NConflicti,t−1. Conley (1999)
clustered standard errors, accounting for spatial
correlation of up to 500km and temporal correla-
tion up to 1 period, are in parentheses. *** p<0.01,
** p<0.05, * p<0.1

A.26



Table B.16: Heterogeneity by nighttime light, mining and agriculture

(1) (2) (3) (4) (5) (6)
Z=Light Z=Light Z=Agri Z=Agri Z=Mine Z=Mine
Conflicti,t Conflicti,t Conflicti,t Conflicti,t Conflicti,t Conflicti,t

DISi,t × No Zi 0.0067 0.0070 0.0003 -0.0008 -0.0032 -0.0025
(0.0045) (0.0047) (0.0044) (0.0044) (0.0076) (0.0073)

DISi,t × Low Zi -0.0049 -0.0055 -0.0042 -0.0051 0.0006 -0.0003
(0.0037) (0.0037) (0.0037) (0.0037) (0.0073) (0.0071)

DISi,t × High Zi -0.0053 -0.0051 -0.0027 -0.0021 0.0010 -0.0014
(0.0062) (0.0061) (0.0043) (0.0043) (0.0071) (0.0073)

DISi,t−1 × No Zi 0.0071* 0.0088** 0.0027 0.0023 -0.0018 -0.0005
(0.0042) (0.0042) (0.0042) (0.0043) (0.0076) (0.0074)

DISi,t−1 × Low Zi -0.0080** -0.0096*** -0.0087** -0.0095*** -0.0033 -0.0049
(0.0037) (0.0037) (0.0036) (0.0036) (0.0074) (0.0071)

DISi,t−1 × High Zi -0.0081 -0.0067 -0.0074* -0.0075* -0.0113* -0.0114*
(0.0060) (0.0059) (0.0040) (0.0039) (0.0067) (0.0068)

NDISi,t × No Zi 0.0016 0.0093*** 0.0001
(0.0033) (0.0035) (0.0062)

NDISi,t × Low Zi 0.0049 0.0070** 0.0054
(0.0039) (0.0035) (0.0061)

NDISi,t × High Zi 0.0060 0.0020 0.0132**
(0.0046) (0.0046) (0.0066)

NDISi,t−1 × No Zi -0.0045 0.0093*** -0.0039
(0.0037) (0.0036) (0.0062)

NDISi,t−1 × Low Zi 0.0137*** 0.0115*** 0.0143**
(0.0039) (0.0035) (0.0061)

NDISi,t−1 × High Zi 0.0071 0.0109** 0.0094
(0.0046) (0.0045) (0.0072)

Observations 184,264 184,264 184,264 184,264 184,264 184,264
District FE YES YES YES YES YES YES
Country-Year FE YES YES YES YES YES YES
NConflicti,t YES YES YES YES YES YES
NConflicti,t−1 YES YES YES YES YES YES

Conflict and DIS are binary variables indicating the presence (=1) or absence (=0) of a conflict resulting
in at least one death, and natural disaster event, respectively, in the given district in the given time period.
NDIS (NConflict) is a binary variable indicating the presence (=1) or absence (=0) of a natural disaster
event (conflict), in any one of the district’s neighbours. Disasters exclude droughts. The set of districts is
divided as no, low or high levels of activity based on binary indicators that capture the intensity of Nightttime
Light, Mining and Agricultural activity. () present Conley (1999) clustered standard errors, accounting for
spatial correlation up to 500km and temporal correlation up to 1 period. *** p<0.01, ** p<0.05, * p<0.1
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Table B.17: Estimates by OFDA receipt-status of natural disasters

(1)
Conflicti,t

DISi,t -0.0030
(0.0033)

DISi,t× Aid 0.0037
(0.0070)

DISi,t−1 -0.0078**
(0.0031)

DISi,t−1 × Aid 0.0125*
(0.0068)

NDISi,t 0.0063*
(0.0034)

NDISi,t × Aid -0.0034
(0.0041)

NDISi,t−1 0.0128***
(0.0035)

NDISi,t−1 × Aid -0.0136***
(0.0041)

Observations 184,264
Distance Cut-off 500km
District FE YES
Country× Year FE YES
NConflicti,t YES
NConflicti,t−1 YES

Conflict and DIS are binary variables
indicating the presence (=1) or absence
(=0) of a conflict resulting in at least
one death, and natural disaster event,
respectively, in the given district in the
given time period. NDIS (NConflict)
is a binary variable indicating the pres-
ence (=1) or absence (=0) of a natu-
ral disaster event (conflict), in any one
of the district’s neighbours. Disasters
exclude droughts. Aid is a binary in-
dicator that identifies whether or not
the natural disaster, whether in district
i or in the neighbouring districts, re-
ceived foreign aid from the OFDA. ()
present Conley (1999) clustered stan-
dard errors, accounting for spatial cor-
relation up to 500km and temporal cor-
relation up to 1 period. *** p<0.01, **
p<0.05, * p<0.1
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C A possible theoretical mechanism

In this section, we provide a possible mechanism of our empirical results, which show how a

negative shock on a district negatively affects the battle on this district, but also affects the

neighbouring districts.

C.1 The general model

Players, districts, and battles Consider a set of players (which can be local military forces

or militia) and different possible battles between them. The network represents the nodes

(players) and the links (battles) between them. We use n = 1, 2, 3, · · · , i, j, · · · , to denote

players and α = a, b, c, · · · , to denote battles. The set of players is denoted by N , with

N = |N | ≥ 2, and the set of battles by T , with T = |T | ≥ 1.

Network We use an N × T matrix Γ = (γαi ) to represent the battle structure. Specifically,

we let γαi = 1 if player i is part of battle α; otherwise γαi = 0. Each player can be part of

multiple battles and different battles may involve different subsets of players. Let N α = {i ∈

N : γαi = 1} ⊆ N denote the set of participants (players) in battle α. Let nα = |N α| ≥ 2

denote its cardinality. Similarly, let Ti = {α ∈ T : γαi = 1} ⊆ T denote the set of battles

that player i takes part in. Let ti = |Ti| ≥ 1 denote the cardinality. Clearly, i ∈ N α if and

only if α ∈ Ti.

Consider the following figure, which represents a star network:

a b1
2 3

Figure C.1: A star network
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The matrix Γ representing the network depicted in Figure C.1 is given by:

Γ =


1 1

1 0

0 1


where rows correspond to players and columns to battles. We see that player 1 engages in a

battle with players 2 and 3; whereas, player 2 engages in battle a with player 1 and player

3 engages in battle b with player 1. We have: N = {1, 2, 3}, T = {a, b}, N a = {1, 2},

N b = {1, 3}, T1 = {a, b}, T2 = {a}, T3 = {b}.

Districts From the network, we can aggregate the players and the battles to obtain a

district. Thus, a district corresponds to a battle and we assume that, in each district,

only one battle can take place. We can define a connectivity matrix Ω = (ωab) such that

ωab ∈ [0, 1] if a link exists between two districts a and b and ωab = 0 otherwise. For example,

in the star network of Figure C.1, there are two districts: district a, which encompasses

players 1 and 2 and where battle a takes place, and district b, which is made of players 1

and 3, and where battle b takes place, so that ωab > 0. This can be represented as follows:

district a district b

1
2 3

Figure C.2: A star network

Of course, any other district representation can be made from Figure C.1. In the em-

pirical analysis, a district was defined by its geographical position and there will be a link

between two districts if there is a major road between them and thus ωab > 0.5 For exam-

5In the empirical analysis, we also used the inverse distance between two districts to define a link between
them.
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ple, in Figure C.2, there are two districts a and b and they are geographically adjacent to

each other (i.e., there is a major road between them). In that case, there are two layers of

proximity, which involve different actors: (i) the Conflict proximity where, as in Figure C.1,

a link is when two players have a battle with each other; this is captured by the matrix Γ,

(ii) the geographical proximity where, as in Figure C.2, there is a link between two districts

when they are spatially adjacent to each other; this is captured by the matrix Ω.

Payoffs Taking the battle structure Γ as given, player i’s strategy is to choose a nonnegative

effort xαi for each battle α ∈ Ti she is involved in. Thus, player i’s strategy is a vector

xi = {xαi }α∈Ti ∈ Rti
+. Given player i’s strategy xi, we denote x = (x1, · · · ,xn) ∈ Rn̄

+ as

the whole strategy profile, and xα = {xαi }i∈Nα ∈ Rna

+ as the effort vector in battle α. Here

n̄ =
∑

α∈T n
α =

∑
i∈N ti =

∑
i∈N ,α∈T γ

α
i denote the dimension of strategy profile x.

The payoff function of player i ∈ N is equal to:

Πi(xi,x−i) =
∑
α∈Ti

vαpαi (xα)− Ci(xi), (C.1)

which is just the net expected value of winning the battle(s). Indeed, in (C.1), pαi (xα) is the

probability of winning battle α for player i. It is given by the following Tullock CSF:

pαi (xα) =
xαi∑

j∈Nα x
α
j

. (C.2)

Moreover, each battle α generates a benefit vα > 0 for the player who wins the battle. This

value might vary across battles. Finally, there is a total cost of Ci(xi), which depends on all

the efforts player i exerts in each battle she is involved in.

Note that, in the data (Section 2), we only observe the total battle at the district level

and the geographical link between districts and analyze how a negative shock (disaster) on a

district affects the total battle in the different districts that are spatially connected. We do
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not, however, observe the players involved in battles in each district. Consider Figure C.2.

In our model, this translates by studying how a decrease in va (the value of battle a) affects

xa1 +xa2, the total battle in district a, and xb1 +xb3, the total battle in the (spatially) adjacent

district b.

Nash equilibrium Let us solve the Nash equilibrium of this game for any network and any

player. We are interested in the pure strategy Nash equilibrium of this battle game. A

strategy profile x∗ = (x∗1, · · · ,x∗n) is an equilibrium of the battle game if for every player

i ∈ N ,

Πi(x
∗
i ,x

∗
−i) ≥ Πi(xi,x

∗
−i), ∀xi. (C.3)

This model is very general because it incorporates any network structure, the best re-

sponse functions are non-linear but, more importantly, each agent is involved in many battles.

We can still show that the equilibrium exists and is unique for any network structure and

give conditions for which the equilibrium efforts are strictly positive. It is, however, diffi-

cult to explicitly characterize the Nash equilibrium of this game and to derive comparative

statics results. Because we want to provide a mechanism of our empirical results, we would

like to derive some properties of this equilibrium for specific networks that we could test

empirically. We will mainly consider the star network of Figure C.1 or Figure C.2 because

it is tractable and still provides all the intuition we need for our empirical analysis.6

The key aspect of our model is that agents are involved in many battles. This will explain

why, after a negative shock, such as a disaster, agents shift their effort to other battles and

can, thus, explain the propagation of shocks in path-connected districts. We can derive

abstract comparative statics results for general network structures but, to understand how

a shock propagates to other districts, we need to focus on specific networks.

6In Section C.3, we provide similar results for a line network with more agents and more battles.
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C.2 Star network

C.2.1 The model

Consider the star network depicted in Figure C.1 where α = a, b (two battles and three

players). Given the network structure, the strategies of the players are: x1 = (xa1, x
b
1),

x2 = (xa2) and x3 = (xb3). To keep the model tractable, we assume that the cost function is

quadratic so that each player’s payoff can be written as:

Π1(x1,x−1) =va
xa1

xa1 + xa2
+ vb

xb1
xb1 + xb3

− s1

2
(xa1 + xb1)2,

Π2(x2,x−2) =va
xa2

xa1 + xa2
− s2

2
(xa2)2,

Π3(x3,x−3) =vb
xb3

xb1 + xb3
− s3

2
(xb3)2.

(C.4)

C.2.2 Equilibrium analysis

Even in this simple network structure, closed-form expressions of the Nash equilibrium efforts

are not possible, but we can use the first-order conditions (FOCs) of players to characterize

the Nash equilibrium. Let

F1(xa1, x
b
1, x

a
2) :=

∂Π1

∂xa1
=

vaxa2
(xa1 + xa2)2

− s1(xa1 + xb1), (C.5)

F2(xa1, x
b
1, x

b
3) :=

∂Π1

∂xb1
=

vbxb3
(xb1 + xb3)2

− s1(xa1 + xb1), (C.6)

F3(xa1, x
a
2) :=

∂Π2

∂xa2
=

vaxa1
(xa1 + xa2)2

− s2x
a
2, (C.7)

F4(xb1, x
b
3) =

∂Π3

∂xb3
=

vbxb1
(xb1 + xb3)2

− s3x
b
3. (C.8)
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We have the following results:7

Proposition 1. Consider the star network depicted in Figure C.1 and the payoff functions

given by (C.4). Then, there exists a unique interior Nash equilibrium (xa∗1 , x
b∗
1 , x

a∗
2 , x

a∗
3 ) that

simultaneously solves:



F1(xa∗1 , x
b∗
1 , x

a∗
2 ) = 0

F2(xa∗1 , x
b∗
1 , x

b∗
3 ) = 0

F3(xa∗1 , x
a∗
2 ) = 0

F4(xb∗1 , x
b∗
3 ) = 0

(C.9)

Given the existence, uniqueness, and interiority of the Nash equilibrium, we are inter-

ested in the effect on the shock of the valuations va and vb on the battle levels of each district.

Note that the system (C.9) is highly non-linear and, therefore, there are no explicit expres-

sions for the equilibrium. Instead, we apply the implicit function theorem to the system

(C.9) in order to derive the comparative statics results. Before performing these exercises,

the following lemma will help us interpret our results.

Lemma 1. For v > 0, s > 0, define

z(x, y) =
vx

x+ y
− s

2
x2. (C.10)

For each y > 0, there exists a unique maximizer x∗(y) = arg maxx>0 z(x, y). Moreover, x∗(y)

is first increasing, then decreasing in y with sign
(
∂x∗

∂y

)
= sign(x∗ − y).

We can see from equations (C.5)–(C.8) that Lemma 1 describes the best response func-

tion x∗(·). In particular, Lemma 1 shows that x∗(·) first increases with y up to the maximum,

which occurs at x∗ = y, and then decreases. There is therefore a non-monotonic bell shaped

7All the proofs of the theoretical model can be found in Appendix C.5.
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relationship between the efforts of two players involved in the same battle. Figure C.3 depicts

this relationship.

best reply x
*HyL x

*
=y

0.5 1.0 1.5 2.0 2.5
y

0.2

0.4

0.6

0.8

x
*

Figure C.3: Best response function x∗(y)

To see the implication of this Lemma, for example, consider the first-order condition

of xa2, that is, F3(xa∗1 , x
a∗
2 ) = 0. Using Lemma 1, we know that the sign of

∂xa∗2
∂xa1

is the

same as the sign of (xa∗2 − xa∗1 ) and that the relationship is bell-shaped where the maximum

occurs at xa∗2 = xa∗1 . Indeed, when xa∗1 < xa∗2 , which means that player 1 is “weak” because

pa2(xa1, x
a
2) = xa2/(x

a
1 + xa2), the probability of winning battle a for player 2, is greater than

50%, then player 2’s best response to an increase of xa∗1 , is to increase her effort xa2. By

contrast, when xa∗1 > xa∗2 , we are on the decreasing part of the relationship because player

2 is now the “weak”player in battle a because she has a lower chance of winning the battle.

Therefore, when player 1 increases her effort, player 2’s best response is to decrease her

effort. Indeed, player 2 knows that her marginal chance of winning the battle is lower and

thus basically gives up by reducing her effort.

Observe that Lemma 1 provides the best response function of a player within an isolated

battle and, hence, abstracts from the general equilibrium effects, that is, the link between

battles through the cost function. In our model, a player may have multiple battles, For

example, for player 1, who is involved in battles a and b, her cost function, C1(xa1, x
b
1) =

s1
2

(xa1 + xb1)2, is convex in her total effort xa1 + xb1. This implies that increasing effort in one
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battle leads to higher marginal cost of effort in the other battle, that is, ∂2C1

∂xa1∂x
b
1

= s1 > 0.

This is not captured by Lemma 1, but we need to take this into account in the calculation

of our comparative statics results.

C.2.3 Comparative statics: Negative shock on a district

As stated above, we do not observe the players involved in each battle in each district in the

data. However, we observe the total battle in each district. Consider Figure C.2. In this

section, we will study how a decrease in va, i.e., a negative shock on district a, affects xa1 +xa2,

the total battle in district a, and xb1 + xb3, the total battle in the (spatially) adjacent district

b.8 To understand the mechanism behind the results, we will also study how a decrease in

va affects the effort of each player involved in each battle.

Proposition 2. Consider the star network depicted in Figures C.1 and C.2 and the payoff

functions given by (C.4). When va, the value of battle a, decreases,

1. both players 1 and 2 decrease their efforts in battle a, that is,
∂xa∗1
∂va

> 0 and
∂xa∗2
∂va

> 0,

2. the total battle intensity in district a reduces, that is,
∂(xa∗1 +xa∗2 )

∂va
> 0,

3. player 1 increases her effort in battle b, that is,
∂xb∗1
∂va

< 0,

4. the total effort of players involved in battles a and b decreases, that is,
∂(xa∗1 +xb∗1 )

∂va
> 0,

5. the effect on the effort of player 3 in battle b is ambiguous, that is,
∂xb∗3
∂va

T 0. Particu-

larly, sign
∂xb∗3
∂va

= sign(xb
∗

1 − xb∗3 ).

6. the total battle intensity in district b increases, that is,
∂(xb∗1 +xb∗3 )

∂va
< 0.

8Without loss of generality, we focus on district a as the analysis for district b is similar because of the
symmetry of the locations of these two districts.
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The first result of this proposition is straightforward. When va, the value of battle a,

decreases, both players involved in battle a spend less effort in that battle and, thus, xa1 and

xa2 decrease. This leads to the fact that the total effort in battle a is reduced (result 2).

Moreover, because C1(xa1, x
a
2), player 1’s cost, and vb, the value of battle b, are fixed,

player 1’s incentive in battle b is higher because lower xa1 decreases her marginal cost in

battle b. Indeed, efforts xa1 and xb1 are strategic substitutes because

∂2Π1

∂xa1∂x
b
1

= − ∂2C1

∂xa1∂x
b
1

= −s1 < 0. (C.11)

consequently, when va decreases, player 1 increases xb1, her effort in battle b (result 3).

However, the aggregate effort of player 1 still goes down as the decrease in battle a dominates

the increase in battle b (result 4).

The fifth result of this proposition is more complex and one needs to use Lemma 1 to

understand this result. Indeed, when va decreases, player 1 decreases her effort in battle a

and increases xb1, her effort in battle b. However, player 3’s effort in battle b, depends on

whether she is “weak”or “strong”in that battle. By the Chain rule,

∂xb∗3
∂va

=
∂xb∗3
∂xb∗1

∂xb∗1
∂va︸︷︷︸
<0

By Lemma 1, sign
∂xb∗3
∂xb∗1

= sign(xb∗3 − xb∗1 ), therefore, sign
∂xb∗3
∂va

= sign(xb
∗

1 − xb∗3 ). Intuitively,

if player 3 is “weak”, for example, because she has a very high marginal cost s3, so that her

effort xb∗3 is lower than xb
∗

1 , then a decrease in va will increase player 1’s effort in battle b

xb∗1 . As a best response, player 3 lowers her effort xb∗3 . The opposite occurs if player 3 is

“strong”in battle b.

The last result, where the intensity of the total battle in district b reduces, is because
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the direct effect of a decrease in va on battle a for player 1 is stronger than the indirect effect

on battle b for player 3, even when the latter leads to more effort.

In summary, a negative shock to district a (i.e., a decrease in va) leads to a smaller

battle in district a but a bigger battle in district b. Player 1’s total effort decreases whereas

player 3’s effort can increase or decrease. The first result demonstrates that a negative local

shock on district a has an effect on the adjacent district b through the general equilibrium

effect. The mechanism behind this result is that the central player (or the player involved

in many battles) must re-allocate efforts in both battles in order to maximize total payoff,

whereas other players must respond optimally.

In Figure C.4, we illustrate our results by plotting the four efforts of the different players

when va increases.9 Consistent with Proposition 2, an increase in va leads to a big increase

for the players in district a, that is both xa2, the effort of player 2 in battle a (blue curve) and

xa1, the effort of player 1 in battle a (red curve) increase. We can also see that the effect of

an increase of va is much smaller for the adjacent district b because xb1 (dotted orange curve)

slightly decreases, whereas xb3 (solid black curve) is nearly unaffected. This is because, in

this example, the effect of va does not spill over to player 3 involved in another battle.

9We use the following values for the parameters: vb = 1, s1 = 0.35, s2 = 0.35, and s3 = 0.7.
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Figure C.4: The effect of an increase of va on the effort of each agent involved in battles in
the network described in Figure C.1

More generally, our comparative statics results highlight the importance of three aspects

of the model: (i) the cost linkage for a player/district participating in multiple battles, (ii)

the relative position of a district within a given battle, and (iii) the non-monotonic best

response function of each player.

C.3 More complex network structure: A line network

Consider the following figure, which represents a line network with four players and three

battles:

c a b12
34

Figure C.5: A line network with four players and three battles

Observe that this network is similar to the one depicted in Figure C.1; however, we

added a link between players 2 and 4 and battle c.
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The matrix Γ representing the network depicted in Figure C.5 is given by:

Γ =



1 1 0

1 0 1

0 1 0

0 0 1


where rows correspond to players and columns to battles. We have: N = {1, 2, 3, 4}, T =

{a, b, c}, N a = {1, 2}, N b = {1, 3}, N c = {2, 4}, T1 = {a, b}, T2 = {a, c}, T3 = {b}, and

T4 = {c}.

Districts From the network, we can aggregate the players and the battles to obtain a

district. In the line network of Figure C.5, there can be four districts, each corresponding to

a battle: districts a, b, c, d. This network with districts can be represented as follows:

c a b12
34

Figure C.6: A line network with three districts

As stated above, in the data, we only observe the total conflict at the district level and

the geographical link between districts. In our model, let us study how a decrease in vb, a

negative shock on district b (disaster) affects the total conflict in the different districts a, b, c.

In particular, we would like to show how a decreases in vb (district located at the extreme

right of the line network) affects the total conflict xc2 + xc4 in district c (district located at

the extreme left of the line network), even if districts b and c are not adjacent and involved

different agents.

As above, to keep the model tractable, we assume that the cost function is quadratic;

hence, each player’s payoff can be written as:
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Π1(x1,x−1) =va
xa1

xa1 + xa2
+ vb

xb1
xb1 + xb3

− s1

2
(xa1 + xb1)2,

Π2(x2,x−2) =va
xa2

xa1 + xa2
+ vc

xc2
xc2 + xc4

− s2

2
(xa2 + xc2)2,

Π3(x3,x−3) =vb
xb3

xb1 + xb3
− s3

2
(xb3)2,

Π4(x4,x−4) =vc
xc4

xc2 + xc4
− s4

2
(xc4)2.

(C.12)

We have the following result:10

Proposition 3. Consider the line network depicted in Figures C.5 and C.6 and the payoff

functions given by (C.12). When vb, the value of battle b, decreases,

1. both players 1 and 3 decrease their efforts in battle b, that is,
∂xb∗1
∂vb

> 0 and
∂xb∗3
∂vb

> 0,

and the total battle intensity in district b is reduced, that is,
∂(xb∗1 +xb∗3 )

∂vb
> 0;

2. player 1 increases her effort in battle a, that is,
∂xa∗1
∂vb

< 0, but her total effort decreases,

that is,
∂(xa∗1 +xb∗1 )

∂va
> 0;

3. the effect on the effort of player 2 in battle a and in battle c as well as on her total effort

is ambiguous. Particularly, sign
∂xa∗2
∂vb

= sign(xa
∗

1 − xa∗2 ), sign
∂xc∗2
∂vb

= sign(xa
∗

2 − xa∗1 ),

and sign
∂(xa∗2 +xc∗2 )

∂vb
= sign(xa

∗
1 − xa∗2 );

4. the total battle intensity in district a increases, that is,
∂(xa∗1 +xa∗2 )

∂vb
< 0.

5. the effect on the effort of player 4 in battle c as well as the total effect on battle c is

ambiguous. Particularly, sign
∂xc∗4
∂vb

= sign(xa
∗

1 − xa∗2 )(xc
∗

2 − xc∗4 ) and sign
∂(xc∗2 +xc∗4 )

∂vb
=

sign(xa
∗

2 − xa∗1 ).

10Even though it is more cumbersome, the proof of Proposition 3 is similar to that of Proposition 2 and
is thus omitted.
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The results of this proposition are similar to that of Proposition 2 since the effect of

a negative shock on the district negatively affects the efforts of the agents involved in this

district and, thus, the total conflict in this district (part 1), but it also propagates to other

districts, depending on the origin of the shock (i.e., how far a district is located from the

district that experiences the shock) and whether a player is “weak” or “strong” in the battle

she is involved in. This is a general pattern that holds whenever the network does not have

a cycle; for example, a tree network.

Interestingly, because the network depicted in Figure C.5 is longer than the one in

Figure C.1, Proposition 3 shows that a negative shock (such as a natural disaster) in district

b, located at the extreme right of the network, affects the effort of agent 4, located at the

extreme left of the network, and thus the conflict in district c, which is not adjacent to

district b. Indeed, some agents are involved in two battles. Thus, when deciding how much

effort to devote to each battle/district, they evaluate their relative strength and their relative

chances of winning a battle and decide to exert more effort in battles they have the highest

chances of winning. However, when there is a negative shock in a given district, the value

of winning a battle goes down and thus agents shift their effort to the other battle they are

involved in. For example, when vb decreases, agent 1 decreases her effort in battle b but

increases it in battle a. This negative shock propagates to other agents and battles who are

path-connected in the network but has a lower effect on them. This is why a decrease of vb

affects the effort of agent 4 but the agent 4’s effort will increase or decrease depending her

relative strength compared to agent 2, who is involved in the same battle as agent 4 (battle

c), but also on the relative strength of agent 2 compared to agent 1 in battle a (part 5 of

Proposition 3). This is the propagation of the shock on district b, which first directly affects

the agents involved in district b, that is, agents 1 and 3, and then indirectly affects the other

path-connected agents, that is, first, agent 2, who is in conflict with agent 1 in battle a and,

then, agent 4, who is in conflict with agent 2 in battle c.
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C.4 Discussion

C.4.1 Mechanism consistent with our model

Even though our model is based on a very specific network structure (the star and the

line network), we believe that the intuition and the prediction of the model carry over

qualitatively to more complex network structures. Thus, our model is able to provide a

simple mechanism that explains (i) how a negative shock (a natural disaster in the data) on

a given district negatively affects the total battle in this district and (ii) how this negative

shock affects the total battle in the (spatially) adjacent districts. Our model shows that (i)

when a natural disaster occurs in a district, the agents involved in a conflict in this district

will decrease their effort because there are less resources to grab. Consequently, (ii) these

agents will shift their effort to spatially adjacent districts, thereby increasing the conflict in

these districts; the effect will fade away for districts located further away from the district

directly affected by the disaster. Our model also predicts that the intensity of the conflict

in spatially adjacent districts will depend on the relatively strength of the agents involved

in the conflicts in these districts. Another prediction of our model is that more “valuable”

districts (higher vα), that is, districts with more economic activity, agricultural land, or

mineral mines are more likely to be worth fighting over, to capture local rents from economic

activity or mineral resources or for strategic reasons. If a disaster hits those districts, the

damages are likely to be higher and therefore the benefits of fighting might be lower as well.

Our empirical results are in accordance with the predictions of the model. First, (i) we

show in Table 1 and Figure A.4 that the occurrence of a natural disaster in a district reduces

the battle probability in this district. Moreover, (ii) in Table 1, we show that the occurrence

of a natural disaster in a given district leads to a positive and significant battle spillovers to

districts that are linked by major road network and geographic proximity. Finally, in Figure

1(b), we show that the battle diffusion occurs if the neighboring district is an agricultural
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district.

C.4.2 Other possible mechanisms

First, when interpreting the negative effect of a natural disaster in a district on fighting

in that district, two interpretations are possible: “incapacitation” or an “economic loss”

channel. Incapacitation means that if there is a flood, then nobody can fight. Economic

loss would mean that the shock decreases the value of production in that district. In our

empirical analysis, we showed the floods are the most prominent type of natural disaster in

our sample (see Table A.1). This means that we have an incapacitation effect (at least in

the short run), because it makes it impossible for conflicts to operate.

Our model only offers one possible mechanism, that is, when there is a negative shock

(e.g., floods) in a district, central players relocate their forces and thus spread the conflicts

to path-connected districts. From our empirical analysis, it is hard to infer whether rebels

relocate because fighting has become complicated or simply because their targets have moved.

Other mechanisms may be at work. For example, it is possible that, following a negative

shock, populations may migrate in response to these shocks. Indeed, a natural disaster that

afflicts an area may produce a wave of refugees and movement of people who subsequently

heighten frictions and escalate violence in another adjacent areas. Given that we have

aggregate data, we cannot test whether this mechanism or the one proposed by our model

is at work.

C.5 Proofs of the Theoretical Model

Proof of Proposition 1: The existence and uniqueness result of the Nash equilibrium

result of this proposition follows directly from Theorems 1 and 2 in Xu et al. (2022).

Indeed, the cost function is quadratic, and therefore convex and strongly monotone, and
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the Tullock contest success function (CSF), given by (C.2), satisfies the assumption on the

CSF assumption in Xu et al. (2022). This shows the existence and uniqueness of the Nash

equilibrium. Moreover, Xu et al. (2022) also show the unique equilibrium satisfies the

property that every conflict contains at least two contestants with positive efforts. Since, in

the star depicted in Figure C.1, each conflict only has two contestants, this unique equilibrium

is interior. 2

Proof of Lemma 1: It is easily verified that ∂2z(x,y)
∂x2

< 0 so that z is strictly concave in x.

Moreover,

∂z

∂x
(0, y) = v/y > 0,

and

lim
x→∞

∂z

∂x
(0, y) = −∞,

so there exists a unique x∗(y) such that ∂z
∂x

(x∗(y), y) = 0. Clearly such x∗ is the maximizer

by the concavity of z.

Moreover, by the implicit function theorem,

∂x∗

∂y
= −

(
∂2z

∂x2

)−1
∂2z

∂x∂y
|x=x∗ .

Since

∂2z

∂x2
< 0,

∂2z

∂x∂y
=
v(x− y)

(x+ y)3
,

so

sign
∂x∗

∂y
= sign(x∗ − y).

This completes the proof of the lemma. 2
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Proof of Proposition 2: By applying the implicit function theorem to system (C.9) for

the parameter va, we obtain:



∂xa1
∂va

∂xb1
∂va

∂xa2
∂va

∂xb3
∂va


= −M−1



∂F1

∂va

∂F2

∂va

∂F3

∂va

∂F4

∂va


(C.13)

where

M :=



∂F1

∂xa1

∂F1

∂xb1

∂F1

∂xa2

∂F1

∂xb3

∂F2

∂xa1

∂F2

∂xb1

∂F2

∂xa2

∂F2

∂xb3

∂F3

∂xa1

∂F3

∂xb1

∂F3

∂xa2

∂F3

∂xb3

∂F4

∂xa1

∂F4

∂xb1

∂F4

∂xa2

∂F4

∂xb3


and



∂F1

∂va

∂F2

∂va

∂F3

∂va

∂F4

∂va


=



xa2
(xa1+xa2)2

0

xa1
(xa1+xa2)2

0


(C.14)

with

∂F1

∂xb3
=
∂F2

∂xa2
=
∂F3

∂xb1
=
∂F3

∂xb3
=
∂F4

∂xa1
=
∂F4

∂xa2
= 0 (C.15)

∂F1

∂xa1
= −s1 −

2vaxa2
(xa1 + xa2)3

,
∂F1

∂xb1
= −s1,

∂F1

∂xa2
=

va

(xa1 + xa2)2
− 2vaxa2

(xa1 + xa2)3
,

∂F2

∂xa1
= −s1,

∂F2

∂xb1
= −s1 −

2vbxb3
(xb1 + xb3)3

,
∂F2

∂xb3
=

vb

(xb1 + xb3)2
− 2vbxb3

(xb1 + xb3)3
,

∂F3

∂xa1
=

va

(xa1 + xa2)2
− 2vaxa1

(xa1 + xa2)3
,
∂F3

∂xa2
= −s2 −

2vaxa1
(xa1 + xa2)3

,

∂F4

∂xb1
=

vb

(xb1 + xb3)2
− 2vbxb1

(xb1 + xb3)3
,
∂F4

∂xb3
= −s3 −

2vbxb1
(xb1 + xb3)3

.

(C.16)

Note that M is just the Jacobian matrix of system (C.9) with respect to (xa1, x
b
1, x

a
2, x

b
3).
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We can easily verify that the sign of the determinant of M is given by:

det(M) := J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂F1

∂xa1

∂F1

∂xb1

∂F1

∂xa2

∂F1

∂xb3

∂F2

∂xa1

∂F2

∂xb1

∂F2

∂xa2

∂F2

∂xb3

∂F3

∂xa1

∂F3

∂xb1

∂F3

∂xa2

∂F3

∂xb3

∂F4

∂xa1

∂F4

∂xb1

∂F4

∂xa2

∂F4

∂xb3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0. (C.17)

We apply the Cramer’s rule to compute each component of the left-hand side (LHS) of

(C.13). After some simplifications, we obtain:

∂xa1
∂va

=
(vaxa1 + s2x

a
2(xa1 + xa2)2)((vb)2 + s1s3(xb3 + xb1)4 + 2vb(xb3 + xb1)(s3x

b
3 + s1x

b
1))

J(xa1 + xa2)4(xb3 + xb1)4
> 0

(C.18)

∂xb1
∂va

= −s1(vaxa1 + s2x
a
2(xa1 + xa2)2)(2vbxb1 + s3(xb3 + xb1)3)

J(xa1 + xa2)4(xb3 + xb1)3
< 0 (C.19)

∂xa1
∂va

+
∂xb1
∂va

=
vb(vaxa1 + s2x

a
2(xa1 + xa2)2)(vb + 2s3x

b
3(xb3 + xb1))

J(xa1 + xa2)4(xb3 + xb1)4
> 0 (C.20)

∂xa2
∂va

=

s1

[
(vb)2xa1(xa1 + xa2)2 + s3v

axa2(xb3 + xb1)4 + 2vb(xb3 + xb1)(s3x
a
1x

b
3(xa1 + xa2)2 + vaxa2x

b
1)

]
J(xa1 + xa2)4(xb3 + xb1)4

+
vavbxa2(vb + 2s3x

b
3(xb3 + xb1))

J(xa1 + xa2)4(xb3 + xb1)4
> 0

(C.21)
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∂xb3
∂va

=
s1v

b(xb1 − xb3)(vaxa1 + s2x
a
2(xa1 + xa2)2)

J(xa1 + xa2)4(xb3 + xb1)3
(C.22)

∂xb1
∂va

+
∂xb3
∂va

= −s1(vaxa1 + s2x
a
2(xa1 + xa2)2)(vb + s3(xb3 + xb1)2)

J(xa1 + xa2)4(xb3 + xb1)2
< 0 (C.23)

This completes the proof of the proposition. 2
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